IDENTIFIKASI KEBERADAAN CEKUNGAN AIR TANAH CIOMAS, BOGOR, BERDASARKAN HASIL PENDUGAAN GEOLISTRIK

Tatang Padmawidjaja

Peneliti Madya Bidang Geofisika Pusat Survei Geologi, Badan Geologi Jalan Diponegoro No 57 Bandung E-Mail: tatangpadmawijaya@yahoo.com

Diterima: 22 April 2010; Disetujui: 15 September 2010

ABSTRAK

Penelitian geolistrik untuk pendugaan cekungan air tanah dan akuifer telah dilakukan di daerah Kecamatan Ciomas, Kabupaten Bogor. Secara geologi lokasi ini termasuk Cekungan Bogor dan Jalur Bogor, dengan batuan yang menempatinya adalah batuan Volkaik Kuarter dari Formasi Bojongmanik. Formasi Bojongmanik terdiri dari pasir kasar sampai halus dan batuan lempung gampingan. Tahanan jenis menunjukkan batas lengkungan pada kedalaman lebih besar dari 200 meter yang menunjukkan batas antara bidang konduktif dan resistif. Tahanan jenis tersebut mempunyai nilai lebih kecil dari 10 ohm m dari material lempung pasiran sebagai cebakan air tanah. Berdasarkan data tahanan jenis tersebut bahwa daerah Ciomas merupakan akuifer air tanah langka yang terjebak di dalam lapisan lempung dan tidak dapat menyimpan air tanah.

Kata kunci: Geolistrik, cekungan air tanah, sedimen lempung, aquifer.

ABSTRAK

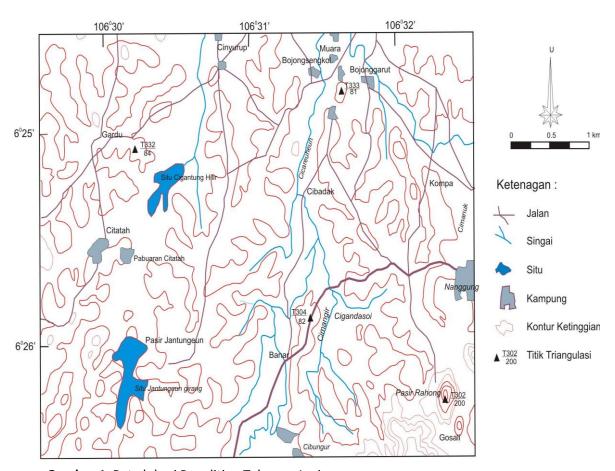
Geoelectric research to estimate soil water basins and aquifers have been conducted in the area Ciomas District, Bogor Regency. The geology in this location including the Bogor Basin and Bogor linemen, with rocks that occupy it is Volcanic of Quaternary rocks of the Formation of Bojongmanik. Formation of Bojongmanik consists of coarse sand to fine clay and calcareous rocks. Resistivity shows the boundary curves at depths greater than 200 meters which indicate the boundary between areas of conductive and resistive. The resistivity has a value smaller than 10 ohm m of sandy clay material as a mineral deposit groundwater. Based on resistivity data is that the area Ciomas is rare soil water aquifer that is trapped in the layers of clay and layers which in impermeable.

Keyword: Geolistrik, basin of soil water, clay sedimentary, aquiver.

PENDAHULUAN

Kecamatan Ciomas secara administratif termasuk dalam wilayah Kabupaten Bogor, yang terletak di bagian utara dan berbatasan dengan Propinsi Banten. Secara geologi lokasi tersebut ditempati oleh Formasi Bojongmanik, terdiri atas perselingan batupasir arkosa, batu gamping, lempung napal, batu lempung dan tuf pasiran, yang merupakan Cekungan Bogor. Daerah ini semula diperkirakan merupakan daerah langka air tanah, dan untuk meyakinkan hal ini, maka diperlukan adanya identifikasi cekungan air tanah secara tak langsung melalui metoda pendugaan geolistrik.

Keberadaan air tanah di dalam media pembawa maupun penyimpan air tanah sangat tergantung dari kondisi geologi setempat. Air tanah yang berasal dari resapan air hujan, secara umum berlangsung di daerah perbukitan atau pegunungan yang kemudian akan mengalir ke daerah topografi rendah. Daerah imbuhan utama dari cekungan air tanah ini adalah gunung


Pangrango (+ 3107 meter), yang menyebar ke arah utara sampai ke Jakarta sedangkan ke arah barat laut sampai ke lokasi penelitian Ciomas. Untuk menduga tingkat produktivitas air tanah di daerah penelitian tersebut diperlukan penelitian geolistrik, dan indentifikasi dari data sumur bor dalam, sumur dangkal, singkapan batuan atau tanah. Penelitian geolistrik ini lebih untuk mengetahui letak bidang perlapisan berdasarkan tinggi – rendahnya nilai yang dihubungkan dengan keberadaan karakter tanah resistif maupun konduktif yang akhirnya dikorelasikan dengan lapisan batuan yang mengadung air tanah.

Sasaran dari penelitian ini untuk mengetahui celah-celah kemungkinan adanya akuifer, sehingga data dapat digunakan sebagai informasi awal di dalam rencana pengeboran air tanah. Metoda geolistrik merupakan metode geofisika yang paling banyak digunakan untuk penyelidikan air tanah, secara tak langsung dan metode ini paling mudah secara operasional.

Dalam pengoperasiannya dilakukan dengan cara mengukur arus yang diinjeksikan ke dalam tanah melalui elektroda arus dan tegangan listrik arus searah. Bentangan elektroda arus dimulai dengan AB/2 = 1 meter, selanjutnya 2 meter, 3 meter dan seterusnya sampai 700 meter.

Sumber daya air tanah relatif cukup banyak, yang berasal dari air hujan dengan curah hujan yang tinggi (di atas 2000 mm/tahun) di wilayah ini, namun tanah lempung tidak dapat dapat menyerap air dan membentuk akuifer airtanah. Air hujan akan mengalir melalui sungaisungai, sebagian mengisi situ-situ atau wadukwaduk kecil yang tersebar di sekitar lokasi penelitian dan sebagian lagi mengalir melalui sungai-sungai kecil yang bermuara ke sungai Ciliwung. Lokasi penelitian secara geografi terletak

pada koordinat 106°30.75'-106°31.7' BT dan 6°25'-6°26' LS (Gambar 1). Morfologi daerah penelitian merupakan daerah pedataran dan perbukitan bergelombang dengan elevasi antara +82 sampai +323 meter (diatas muka laut). Berdasarkan data elevasi tersebut dibagi dalam dua wilayah, yaitu wilayah selatan yang ditempati oleh perbukitan bergelombang dengan elevasi lebih dari +100 meter, dan wilayah utara sebagai daerah datar dengan elevasi lebih rendah dari +100 meter. Wilayah utara relatif lebih landai dengan kemiringan 0° sampai 3°, sedangkan bagian selatan dengan kemiringan lebih besar dari 20° dan relatif lebih curam, terutama di sekitar bukit Rahong dengan elevasi sekitar +230 meter (Gambar 1).

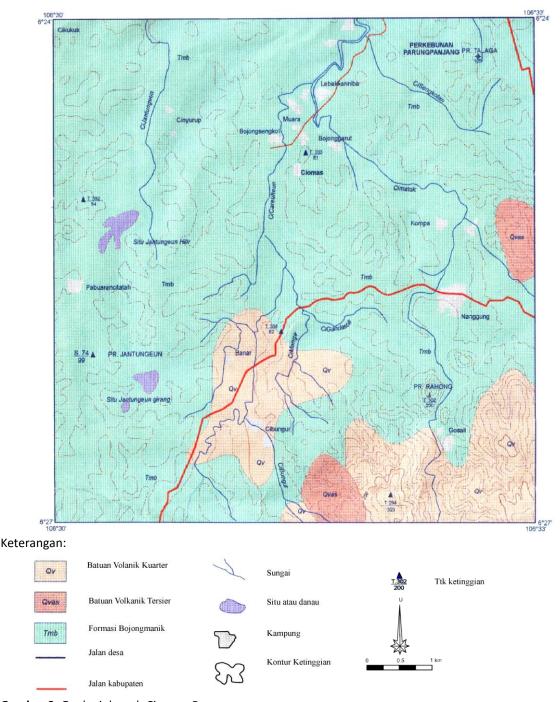
Gambar 1 Peta lokasi Penelitian Tahanan Jenis

TINJAUAN PUSTAKA

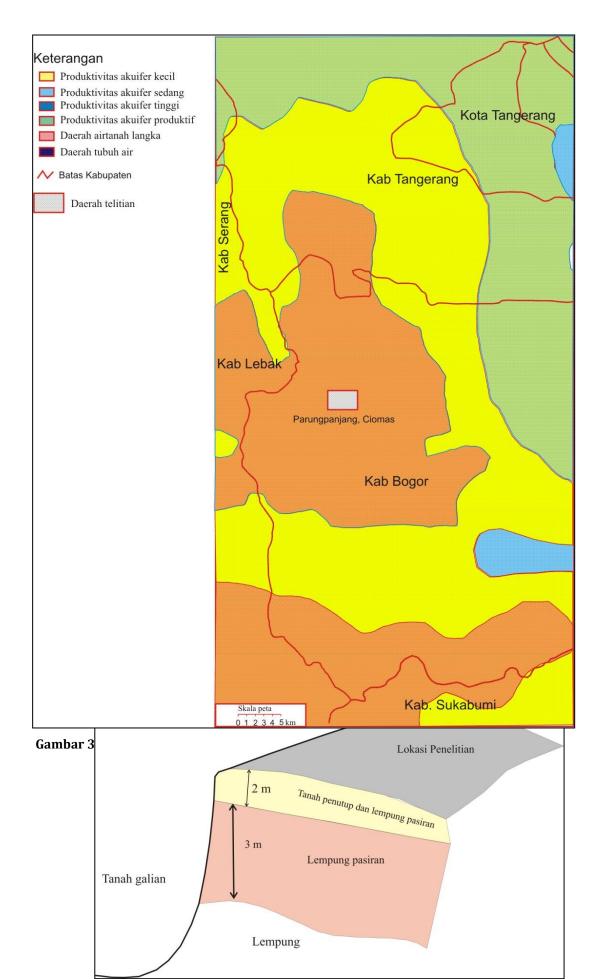
Secara geologi daerah Lembar Bogor ditempati oleh volkanik Kuarter, batuan terobosan andesit dan Formasi Bojongmanik, yang merupakan erupsi gunung api Purba-Sunda yang membentuk sedimen volkanik. Sejalan dengan pembentukan endapan tersebut dalam kurun waktu yang sama terjadi kegiatan tektonik yang membentuk adanya tinggian dan depresi bentuk oleh tinggian dan depresi (Subagio dan Untung, M., 1994). Kawasan tinggian dan depresi tersebut dikenal sebagai Lajur Bogor. Secara geologi daerah penelitian tersebut dipengaruhi oleh pembentukan tinggian dan depresi yang berarah utara – selatan,

yang ditunjukkan oleh pola anomali gayaberat. Tinggian anomali Bouguer (Subagio dan Untung, M., 1994) diduga sebagai segmen pengangkatan batuan alas, tersingkap sebagai Andesit Gunung Sudamanik (Qvas) yang membentuk morfologi perbukitandengan elevasi antara +200 sampai +323 m, dan membentuk topografi rendah ke arah utara yang mencapai elevasi +80 m. Berdasarkan Peta Hidrogeologi Bogor (Gambar 3), wilayah Ciomas merupakan daerah airtanah langka, yang berarti bahwa di daerah ini tidak terikat adanya sumber daya airtanah. Hal ini disebabkan jenis batuan yang menempatinya adalah Formasi Bojongmanik (yang merupakan lempung dengan perselingan batu gamping) yang mempunyai pori kecil atau cukup kompak dan sangat kedap air. Dari tahanan jenis salah satunya menyebabkan adanya air tanah langka adalah batuan yang menempatinya adalah batu lempung dengan kedalaman mencapai 200 meter.

Kawasan ini terbentuk oleh endapan volkanik tua dan volkanik muda dari Gunung Pangrango yang mempunyai umur batuan antara Plistosen Bawah hingga Holosen. Litologi yang dominan adalah breksi, lahar, lava, pasir tufan dan lempung tufan, yang sebagian besar mampu meresapkan air di daerah imbuhan (recharge area) khususnya air hujan. Kawasan Pangrango (+3018 mdpl) mempunyai dominasi endapan Kuarter berupa lava, breksi dan lahar (Effendi dkk, 1998). Endapan kipas volkanik Bogor yang menutupi sebagian besar permukaan Bogor - Depok mempunyai litologi dominan berupa tuf pasiran berselingan dengan konglomerat (Turkandi dkk, 1992). Menurut Assegaf & Deny Juanda (1998) ketebalan lapisan kipas gunungapi yang bertindak sebagai lapisan akuifer utama diduga berkisar antara 20-50 meter. Mata air di daerah Bogor terletak pada elevasi 300-1200 meter, umumnya mempunyai litologi berupa breksi, lahar dan lava dari kelompok endapan volkanik muda. Hal yang menarik dalam mengamati penyebaran atau pemunculan mata air dalam suatu tubuh gunungapi, ditunjukkan oleh adanya penyebaran mata air yang relatif radial. Menurut Turkandi (1992) bahwa morfologi daerah penelitian merupakan bentukan dari satuan produk gunungapi dan dapat dibagi menjadi 3 satuan utama yaitu Tubuh, Lereng dan Kipas Volkanik. Secara geomorfologi dibagi berdasarkan produk volkaniknya yaitu Gunungapi Gegerbentang, Gunungapi Pangrango, Gunungapi Lemo, Lereng Gunungapi Pangrango dan Kipas


Satuan batuan yang menutupi yang terdiri dari batuan sedimen berumur Tersier sebagai basement, batuan gunungapi Kuarter, sedimen endapan Fluvio – marin (laut dangkal) dan Kipas volkanik Bogor. Batuan gunungapi Kuarter tersebut mempunyai konduktivitas tinggi dan dianggap sebagai lapisan akuifer yang baik. Satuan keempat yaitu Endapan laut (Marin) di dekat garis pantai Jakarta. Secara detil keempat satuan batuan tersebut dapat diuraikan sebagai berikut (Geologi Lembar Bogor, Effendi A.C., Kusmana, dan Hermanto, B., 1998.

- 1) Satuan Sedimen Tersier yaitu lempung, gamping dan sedikit batupasir gampingan, yang tersingkap di daerah Citeureup, Leuwiliang dan Ciseeng pada daerah Utara dan bagian selatan di daerah Cibadak.
- 2) Satuan Endapan Gunungapi yaitu sedimen piroklastik yang tersebar di lereng gunung Pangrango dan Gegerbentang. Endapan batuan didominasi oleh batuan klastik kasar dengan arah sebaran melandai ke baratlaut dan tenggara dengan sudut kemiringan 11° 17°.
- 3) Satuan Kipas Volkanik Bogor yaitu batuan sedimen yang berasal dari gunungapi dimana sebagian besar diendapkan dalam lingkungan fluviatil. Bidang lapisan ini mempunyai kemiringan perlapisan 70-100 dan pada beberapa tebing sungai Ciliwung tersingkap dengan baik. Litologi berdasarkan pengamatan terdiri dari konglomerat dan breksi dengan komponen andesit dan matriks tuf.
- 4) Satuan Endapan laut (Marin) yaitu batuan yang memiliki hubungan menjemari dengan endapan Kipas Volkanik Bogor. Pada beberapa singkapan terlihat perlapisan yang baik dengan ukuran butir pasir.

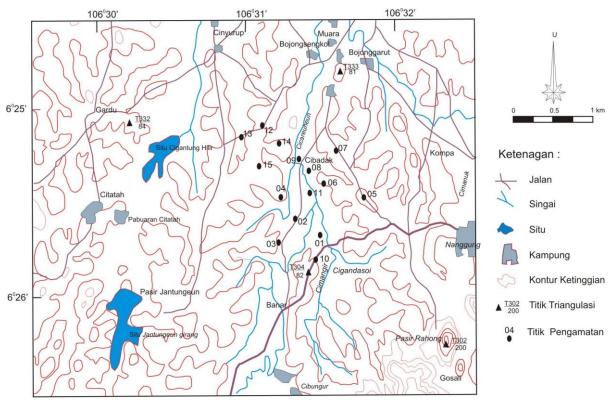

Secara detail geologi daerah penelitian seperti yang diperlihatkan pada gambar 2, ditempati oleh batuan Kuarter sampai Tertier, yang terdiri atas batuan gunung api muda (Qv), andesit Gunung Sudamanik (Qvas) yang tersingkap di bagian selatan dan Formasi Bojongmanik (Tmb) tersingkap di bagian utara. Batuan volkanik muda yang terdiri dari Breksi, lahar, tuf breksi dan tuf batugamping, sedangkan Formasi Bojongmanik terdiri atas perselingan batu pasir dan batu lempung dengan sisipan Batugamping. Formasi Bojongmanik menempati daerah telitian hampir sekitar 80 persen luasnya dan tersingkap sepanjang sungai Cimangir. Di bagian selatan Kp. Banar yaitu daerah penggalian batu di Desa Cipining, tersingkap batuan lempung pasiran dan lempung, seperti ditunjukkan pada gambar 3. Lempung tersebut yang paling muncul didalam Formasi Bojongmanik dan bersisipan dengan batu pasir, dan mempunyai penyerapan kecil dari serapan air permukaan disebabkan ukuran porositasnya kecil, oleh karena itu batuan lempung tersebut tidak dapat meloloskan ke lapisan batuan dibawahnya. Berdasarkan komposisi batuan yang telah diuraikan di atas diduga bahwa merupakan daerah air tanah langka sebagai mana yang ditunjukkan pada peta hidrogeologi Lembar Bogor (gambar 4).

Berdasarkan data hidrogeologi daerah penelitian merupakan termasuk dalam wilayah air tanah langka, khususnya wilayah Kabupaten Bogor, dan dikelilingi oleh wilayah yang mempunyai produktivitas akuifer kecil. Hal ini dapat digunakan sebagai acuan dalam pembahasan hasil pengamatan tahanan jenis selanjutnya.

Berdasarkan pengamatan singkapan batuan di lapangan di Desa Cipining menunjukkan bahwa lempung merupanan komponen utama sebagai batuan volkanik walaupun pada beberapa lokasi bercampur dengan pasir yang membentuk lempung pasiran.

Gambar 2 Geologi daerah Ciomas, Bogor

Gambar 4 Model geologi berdasarkan singkapan di daerah Kp. Banar, Desa Cipining, Bogor


HASIL PENELITIAN

Titik pengamatan yang diperoleh dalam penelitian ini adalah 15 buah, dengan interval titik pengamatan antara 280 sampai 350 meter, nilai tahanan jenis diperoleh berkisar antara 1.4 Ωm sampai 700 Ωm. Titik pengamatan tersebut ditempatkan dalam bentuk lintasan, yaitu 2 lintasan sejajar dan satu lintasan memotong dari dua lintasan sejajar. Penempatan titik tersebut dapat memudahkan di dalam melakukan analisanya, sehingga dari lintasan - lintasan tersebut yaitu lintasan A-B, lintasan C-D dan E-F. Pengukuran tersebut lintasan pendugaan kandungan air tanah atau resevoir air tanah dengan injeksi sumber arus kedalam tanah dan arus tersebut akan menyebar ke semua tempat dan akan terekam pada salah satu titik tertentu, rekaman dalam titik sounding tahanan jenis, dan akan menginformasikan besar kecilnya arus. Rekaman titik sounding tersebut dalam bentuk lintasan dapat dilakukan pendugaan terhadap resevoir air tanah, struktur dangkal geologi bawah permukaan maupun jenis batuan.

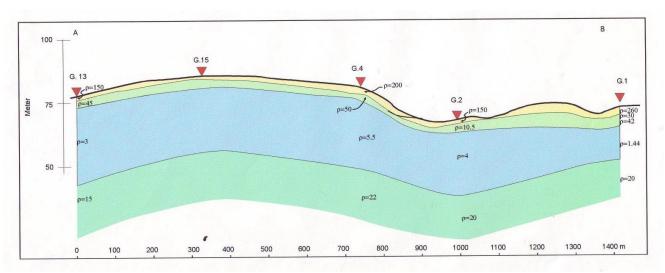
Untuk memperoleh kualitas data tahanan jenis yang teliti, pengolahan data dilakukan dengan dua cara yaitu pengolahan di lapangan dan pengolahan di kantor. Pengolahan data di lapangan dimaksudkan untuk melakukan koreksi jika terjadi kesalahan pengukuran. Sedangkan pengolahan data di kantor adalah untuk memperoleh data

akhir yang dianggap data tersebut tidak ada kesalahan.

Bentangan setengah jarak elektroda arus (L/2) mencapai 600 meter untuk memperoleh penetrasi arus dapat sampai kedalaman 150-200 meter. Untuk setiap harga L/2 dan a/2 (setengah jarak elektroda potensial) dapat ditentukan nilai tahanan jenis semu (ps)-nya. Data yang diperoleh berupa lengkung duga dalam skala logaritmis, kemudian diolah dengan cara matching dengan kurva standar, di dalam proses ini menggunakan software komputer yaitu program Resint-53. Titik pengamatan ditempatkan sepanjang punggungan, lembah dan jalan sejajar dengan punggungan perbukitan di bagian timur lokasi penelitian. Penelitian ini dilakukan dengan menempatkan titik-titik pengamatan pada lintasan sebagaimana terlihat pada Gambar 5. Penempatan titik-titik pengamatan seperti ini diharapkan memberikan gambaran dan mewakili informasi penyebaran tahanan jenis untuk seluruh daerah penelitian. Lintasan utama (base-line) berarah baratlaut-tenggara sebanyak dua lintasan yang sejajar dan satu lintasan memotong (cross-line) berarah timurlaut-baratdaya terdiri atas tiga lintasan yaitu lintasan utama A-B, lintasan C-D dan lintasan memotong E-F.

Gambar 5 Distribusi titik pengamatan di daerah penelitian

PEMBAHASAN


Untuk memperoleh tahanan jenis sejati dengan kedalamannya dilakukan metoda pencocokan (matching) kurva lengkung standar dengan kurva lengkung hasil pengukuran tahanan jenis pada skala logaritma, untuk masing-masing titik sounding. Selanjutnya hasil matching tersebut diplot dalam lintasan yang menunjukan nilai tahanan jenis dan kedalaman lapisan.

Nilai tahanan jenis dan kedalaman diplot pada penampang sebagai model geologi bawah permukaan, pada masing-masing lapisan batuan. Masing-masing lintasan dari Lintasan A – B, lintasan C – D dan lintasan E – F, akan diuraikan secara lebih detil. Antara satu lintasan dengan lintasan lain saling terkorelasi, sehingga dapat diperoleh gambaran secara keseluruhan, seperti dijelaskan pada gambar 9.

1) Lintasan A-B

Lintasan ini terletak di bagian barat yang terdiri dari titik ukur G-13, G-15, G-4, G-2 dan G-1

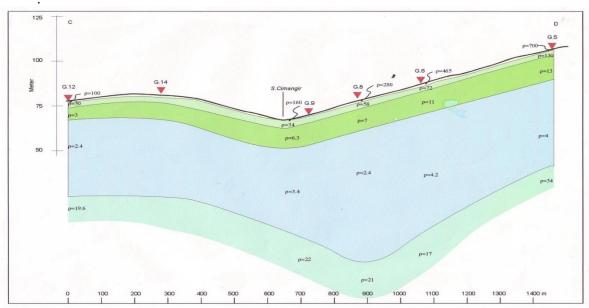
(Gambar 6), dengan lintasannya berarah barat laut - tenggara. Model geologi bawah permukaan ini diperoleh 4 bidang lapisan, sesuai nilai kelompok tahanan jenisnya, yang digambarkan sebagai litologi batuannya. Lintasan ini dengan panjang 1400 meter dan kedalaman mencapai 100 meter. Dimana lapisan paling atas sebagai lapisan penutup merupakan lapisan tanah lempung kering dengan kedalamannya 1.1 meter, dan tahanan jenisnya antara 150 - 260 Ωm, lapisan tanah kering merupakan lapisan resistive. Lapisan dibawahnya atau lapisan kedua dengan ketebalannya antara 2.3 - 4.4 meter dengan harga tahanan jenisnya antara 11-50 Ωm, yang ditempati oleh lempung dengan sisipan gamping. Lapisan ketiga dengan ketebalan antara 20-35 meter dengan harga tahanan jenis semu berkisar antara 1.4-5.5 Ωm, yang ditempati oleh batu lempung dengan sisipan batu gamping. Lapisan keempat sebagai lapisan alas dari lapisan batuan diatasnya mempunyai ketebalan tak terhingga terdiri dari lempung dengan sisipan batugamping, yang juga ditunjukkan pada Tabel 1.

Gambar 6 Penampang Tahanan Jenis pada lintasan A-B

Tabel 1 Lintasan A-B

Lapisan	Ketebalan lapisan (m)	Nilai tahanan jenis (Ωm)	Keterangan
I	0.8-1.1	150-260	Tanah penutup kondisi kering
II	2.3-4.4	11-50	Perselingan batupasir, lanau dan lempung
III	20.0 - 35.0	1.4-5.5	Lempung dan nafal
IV		15.0-22.0	Lempung dengan sisipan gamping

Lintasan ini secara umum ditempati oleh lempung basah sehingga diperoleh nilai tahanan jenis kecil dan bersifat konduktif. Dengan demikian dapat dikatakan bahwa nilai tahanan jenis rendah yang telah diperoleh tidak menunjukkan adanya daerah reservoir air tanah.


2) Lintasan C-D

Lintasan ini terletak di bagian yang terdiri dari titik ukur G-12, G-14, G-9, G-8, G-6 dan G-5 (Gambar 7), dengan lintasannya berarah barat laut – tenggara. Inteval antara titik pengamatan pada lintasan ini antara 300 sampai 350 metem dengan panjang lintasan 1400 meter. Model geologi dangkal bawah permukaan yang diperoleh pada lintasan tahanan jenis ini diperoleh 4 bidang lapisan, yang menggambarkan dengan masingmasing bidang lapisan tahanan jenis tersebut menggambarkan litologi batuannya. Dalam pemodelannya paralel dengan bentuk kontur topografinya.

Adapun masing - masing dapat diuraikan sesuai dengan model lapisannya. Lapisan paling atas merupakan lapisan tanah penutup dengan ketebalan antara 0.7 sampai 1.2 m, tahanan jenisnya antara 100 - 700 Ωm dengan litologinya adalah tanah lempung kering, sebagai lapisan resistive. Lapisan berikutnya atau lapisan kedua dengan ketebalan antara 1.5 - 3.0 meter dengan harga tahanan jenisnya antara 34-130 Ωm, yang ditempati oleh pasir lempungan. Lapisan ketiga dengan ketebalan antara 4.5-10 meter dengan harga tahanan jenisnya antara 6.3 - 13 Ωm, yang ditempati oleh perselingan batupasir, lanau dan lempung Lapisan empat ketebalannya antara 43 -63 meter dengan harga tahanan jenismya antara 2.4 - 4.2 Ωm, yang ditempati oleh lempung napalan. Lapisan ke lima dengan ketebalan tak terhingga merupakan lapisan lempung dengan sisipan batugamping, yang juga diperlihatkan pada Tabel 2.

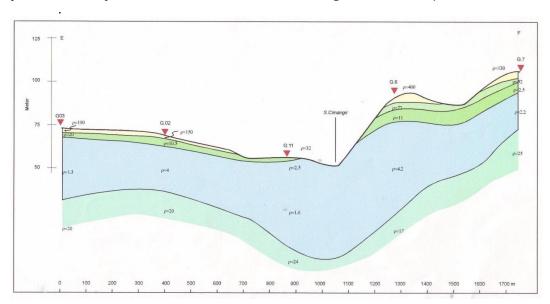
Pada lintasan ini pemodelan geologinya mengikuti pola kontur topografi, hal ini disebabkan bahwa kedalaman sampai 100 meter, batuan sedimen yang menempatinya tidak terperangaruh oleh struktur geologi regional. Sedangkan nilai tahanan jenis pada batuan di bawah tanah penutup menunjukkan antara 1.5 sampai 13 Ωm, termasuk

medium konduktif, artinya ada kemungkinan akan ditemukan cebakan atau reservoai air tanah, namun dilapangan hasil pengamatan singkapan batuan lempung lebih banyak ditemukan, dan bersifat basah. Pada lintasan ini kedalaman lapisan batuan dasar (basement) berkisar antara 50-80 meter dan relatif meninggi ke arah utara.

Gambar 7 Penampang Tahanan Jenis pada lintasan C-D

Tabel 2 Lintasan C-D

Lapisan	Ketebalan lapisan (m)	Nilai tahanan jenis (Ωm)	Keterangan
ı	0.7-1.2	100 - 700	Tanah penutup kondisi kering
II	1.5 - 3.0	34 – 130	Lempung pasiran
III	4.5 - 10	6.3 – 13	Perselingan batupasir, lanau dan lempung
IV	43 - 63	2.4 – 4.2	Lempung dan nafal
V		17 - 34	Lempung dengan sisipan gamping


3) Lintasan E - F

Lintasan ini yang memotong lintasan A - B dan C - D, dengan titik ukurnya terdiri dari G-12, G-14, G-9, G-8, G-6 dan G-5 (Gambar 8), lintasan tersebut berarah barat daya – timur laut. Berdasarkan nilai tahanan jenisnya diperoleh pemodelan yang menunjukkan 5 bidang lapisan, masing-masing bidang lapisan tahanan jenis tersebut menggambarkan litologi batuannya.

Adapun lapisan tamah penutup dengan tahanan jenisnya antara 130 - $400~\Omega m$, sebagai lapisan resistive dengan ketebalannya antara 1.0 - 1.5~m, lapisan berupa tanah lempung kering. Bidang lapisan ke dua sampai ke lima merupakan lapisan konduktif yang banyak dipengaruh rembesan air tanah, namun bukan sebagai reservir air tanah. Dengan uraian sebagai berikut bidang lapisan kedua dengan ketebalan antara 2.3~-5.0~meter, tahanan jenisnya antara $10.5~-72~\Omega m$,

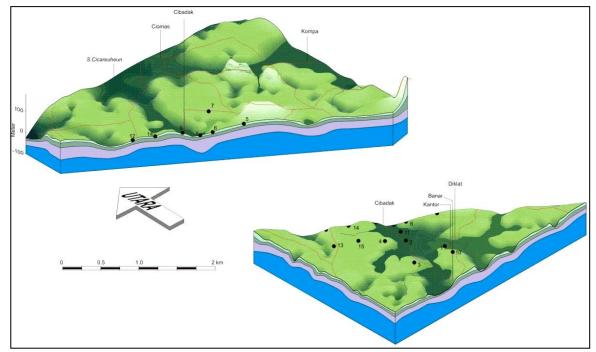
berupa pasir lempungan. Lapisan ketiga dengan ketebalan antara 2.5-9.5 meter dengan harga tahanan jenisnya antara 2.5-9.5 Ω m, yang terdiri atas perselingan antara batupasir, lanau dan lempung. Lapisan keempat dengan ketebalan antara 25-55 meter dengan harga tahanan jenis semu berkisar antara 1.3-4.2 Ω m, berupa lempung napalan. Lapisan kelima sebagai basemen dari lapisan diatasnya ketebalannya tak terhingga nilai tahanan jenisnya antara 17-25 Ω m berupa lapisan lempung dengan sisipan batugamping yang juga diperlihatkan pada **Tabel 3**.

Pada lintasan ini model geologi yang diperoleh mengacu pada singkapan batuan yang di peroleh dari pengupasan tanah seperti ditunjukkan pada lapisan satu, dua dan tiga. Sedangkan pola modelnya mengikuti bentuk topografi, dimana pembentukan lapisan sedimen ini termasuk umur muda berdasarkan umur geologi. Lapisan dibawah lapisan tanah penutup merupakan lapisan konduktif dengan tahanan jenisnya antara 1.3 sampai 72 Ωm, artinya komponen lempung basah yang berkembang pada lintasan sama seperti pada lintasan lainnya.Sedangkan batuan alas yang menenmpati bidang lapisan ini relatif lebih meninggi kearah timur laut, yang menuju ke daerah perbukitan, dan kearah barat daya merupakan daerah topografi rendah, yang dicirikan adanya Situ Jantungan Berang. Berdasarkan analisis dari ketiga lintasan menunjukkan bahwa ketebalan sedimen mengikuti pola atau bentuk topografinya, sehingga dapat dijelaskan bahwa lapisan batuan dan tanah penutupnya adalah batu lempung dengan sisipan batu gamping dengan ketebalan mencapai 200 meter sesuai dengan batas lengkungan kurva logaritmik tahanan jenis.

Gambar 8 Penampang Tahanan Jenis pada lintasan E-F

Tabel 3 Lintasan E - F

Lapisan	Ketebalan lapisan (m)	Nilai tahanan jenis (Ωm)	Keterangan
I	1.0 - 1.5	130 - 400	Tanah penutup kondisi kering
II	2.3 - 5.0	10.5 – 72	Lempung pasiran
III	2.5 - 9.5	2.5 - 11	Perselingan batupasir, lanau dan lempung
IV	25 - 55	1.3 – 4.2	Lempung dan nafal
V		17 - 25	Lempung dengan sisipan gamping


Namun secara keseluruhan komponen batu lempung cukup dominan, sedangkan lempung

pasiran diperoleh pada kedalaman 5 meter, oleh karena itu lokasi ini merupakan batuan dengan

butiran berporositas kecil dan kedap air atau lapisan ini bersifat *unpermeabilitas*.

Selanjutnya menggabungan dari 3 lintasan diatas seperti yang ditampilkan pada Gambar 9 sebagai bentuk tiga dimensinya dari daerah penelitian, yang menggambarkan bidang perlapisan yang mengikuti bentuk kontur

tentang struktur geologi dangkal dengan kedalaman sekitar 100 meter, dan ini sangat bermanfaat tidak hanya menentukan air tanah untuk keperluan penduduk dalam penyedian air bersih. Namun juga untuk keperluan lain misalnya untuk penanggulangan bahaya longsor atau banjr yang dapat membahayakan daerah sekitarnya atau

topografinya. Hal ini menunjukan bahwa hasil penelitian geolistrik dapat memberikan informasi daerah lain.

Gambar 9 Panampang tahanan jenis dan korelasi dengan model geologi bawah permukaan daerah Parungpanjang

Secara umum daerah merupakan lapisan lempung pasiran dan lempung gampingan sehingga daerah ini termasuk daerah air tanah langka. Air hujan tidak mampu menyerap kedalam lapisan tanah, sehingga akan langsung mengalir ke sungai atau situ sekitarnya. Oleh karena itu, daerah ini perlu diwaspadai akan meyebabkan pengiriman banjir ke Jakarta. Dan diperlukan adanya penataan situ atau waduk untuk menampung air hujan, jika terjadi hujan besar dan luapan sungai Cicareuheun. Diperlukan adanya pelestarian hutan atau tanaman produksi untuk menaham longsoran.

KESIMPULAN

Dari pembahasan dapat disimpulkan bahwa

 Tanah penutup dengan kandungan air kecil yang terdiri dari humus akar dan tumbuhan dengan tahanan jenis lebih besar dari 200 ohm meter.

- ullet Lapisan batuan dibawah tanah penutup merupakan lempung gampingan dengan tahanan jenis antara 1.4 sampai 25 Ω m, sebagai lapisan konduktuf sepertinya menunjukkan mengandung air, namun daerah tersebut merupakan air tanah langka disebabkan air tanah terjebak didalam lempung gampingan tersebut, dengan kedalaman mencapai 200 meter.
- Lapisan tanah di daerah ini merupakan air tanah langka, dengan resapan yang jelek, sehingga air hujan seluruhnya akan menuju sungai dan sebagian menuju situ – situ sekitarnya.
- Satuan batuan lempung gampingan merupakan cekungan sedimen yang merupakan bagian dari Cekungan Bogor, namun yang tidak mempunyai potensi sumber daya air tanah.

Dari uraian diatas daerah Ciomas dengan tahanan jenis rendah lebih kecil dari 30 ohm m pada lapisan lempung, yang merupakan daerah air tanah langka, dengan lapisan penutupnya adalah tanah kering tahanan jenisnya lebih besar dari $100~\Omega$ m. Oleh karena ini, jika lokasi tersebut dikembangkan sebagai daerah pemukiman maupun industri akan kesulitan air bersih.

DAFTAR PUSTAKA

- Geologi Tata Lingkungan, 2009, *Peta Hidrogeologi Bogor Indonesia*.
- Assegaf A. & Deni Juanda P., 1998, Identifikasi Kawasan G. Salak G.Gede G. Pangrango sebagai Zona resapan dan Luahan daerah Ciawi-Bogor Kabupaten Bogor Jawa Barat. Prosiding Pertemuan Ilmiah Tahunan, Yogyakarta 8-9 Desember 1998.
- Effendi A.C., Kusmana, dan B.Hermanto, 1998, *Peta Geologi Lembar Bogor*, Pusat Survei Geologi.
- Hendri Setiadi, 2006, Penyelidikan Potensi Air Tanah Skala 1: 100.000 atau lebih besar berbasis Cekungan Air tanah, Pusat Survei Geologi, Badan Geologi, Bandung.
- Subagio dan Untung, 1994, *Cekungan Jakarta* berdasarkan data gayaberat, Puslitbang Geologi Bandung, hal 2.

- Sunaryo, Arief Rahmansyah dan Diah Sisiningsih, 2003, Penentuan lapisan aquifer dengan metoda geolistrik resistivitas di desa Tempuran, Jatilangkung dan Awangawang, Kec Pungging, Kab. Mojokerto, Proceeding of Joint Convention Jakarta, IAGI and HAGI Annual Convention and Exhibition.
- Tatang Padmawidjaja dan DZ Hayat, 1995, Penyelidikan air bawah tanah daerah Ciomas dengan metoda geolistrik, PSG, hal
- Turkandi T., Sidarto, D.A. Agustyanto and M.M.P. dan Hadiwidjoyo, 1992, Peta Geologi Pendahuluan Lembar Jakarta dan Kaukauna Serbia, Puslitbang Geologi Bandung.