PEMODELAN AIR TANAH DI CEKUNGAN AIR TANAH UMBULAN DENGAN VISUAL MODFLOW PREMIUM 4.3

Segel Ginting¹ Heni Rengganis²

Calon Peneliti Teknik Hidrologi, Pusat Litbang Sumber Daya Air, Bandung
 Peneliti Madya Hidrologi, Pusat Litbang Sumber Daya Air, Bandung
 e-mail: hendrycus2000@yahoo.com

Diterima: 3 Agustus 2010; Disetujui: 4 Oktober 2010

ABSTRAK

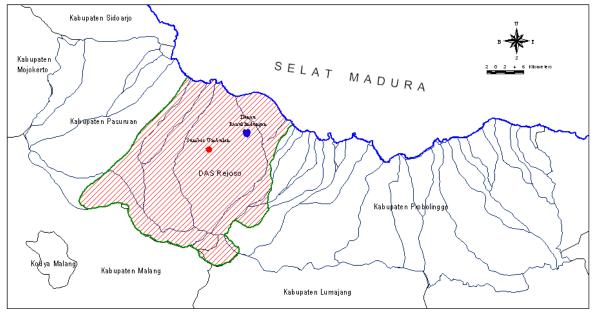
Mata air umbulan adalah merupakan sumber utama air andalan untuk wilayah Surabaya. Begitu pentingnya mata air tersebut bagi penduduk di surabaya maka mata air ini sangat perlu sekali untuk di jaga agar debit yang keluar dari mata air tersebut tidak secara drastis mengalami penurunan akibat aktivitas manusia. Untuk melihat perilaku terhadap perubahan muka air tanah yang terjadi di CAT Umbulan maka dilakukan pemodelan air tanah dengan menggunan program Visual MODFLOW Premium 4.3. Program tersebut selanjutnya dikalibrasi dengan menggunakan data muka air yang dianalisis oleh Nipon Koei pada tahun 1986. Setelah dilakukan kalibrasi maka dilakukan analisis pemodelan sampai dengan tahun 2006 sehingga diperoleh hasil kondisi muka airnya. Berdasarkan hasil muka air pada tahun 2006 maka selanjutnya dilakukan skenario dengan meningkatkan jumlah pemompaan di seluruh lokasi baik secara kuatitas maupun secara areal. Berdasarkan hasil sekenario tersebut maka terjadi surutan yang lebih besar pada skenario I sampai dengan skenario III dibandingakan dengan surutan yang terjadi pada skenario IV sampai dengan skenario VI.

Kata kunci: Air Tanah, CAT Umbulan, Visual MODFLOW 4.3.

ABSTRACT

Umbulan wellspring is a water primary source for Surabaya region. It's importance for people in Surabaya, so this wellspring flowing awakes continuously every years. To see behavior to change of water table happened in Umbulan Groundwater Basin has been done by groundwater modelling with Visual MODFLOW Premium 4.3 programs. These Programs has calibrated before used to groundwater modeling. Groundwater modelling analysis has done up to 2006 year and obtained water table condition result. Based on water table result in the year 2006, so it's done scenario by increasing pumpings number for whole location either in quantity and also in region. This Scenario resulted drowdown larger ones at scenario I up to scenario III is compared with drowdown happened at scenario IV up to scenario VI.

Keywords: Groundwater flow, Umbulan Groundwater Basin, Visual MODFLOW 4.3.


Mata air umbulan adalah merupakan sumber utama air untuk wilayah surabaya. Begitu pentingnya mata air tersebut bagi penduduk di Surabaya maka mata air ini sangat perlu sekali untuk di jaga agar debit yang keluar dari mata air tersebut tidak secara drastis mengalami penurunan akibat aktivitas manusia.

Mengingat salah satu sumber air yang diandalkan di daerah ini adalah mata air dan merupakan satu-satunya sumber daya air yang dapat digunakan secara langsung untuk berbagai keperluan, maka pengelolaan air tersebut hendaklah dapat digunakan dengan penuh perhitungan agar tidak terjadi permasalahan yang timbul pada masa mendatang.

Untuk mencegah konflik kepentingan yang merugikan, maka sangat diperlukan pengaturan dan koordinasi antar para pengguna air, antar sektoral dan antar wilayah. Berbagai instrumen dan kebijakan perlu dikembangkan, mencakup pengaturan, monitoring, informasi sedemikian rupa, sehingga pengelolaan tata guna lahan atau tata ruang dan pendekatan pengelolaan sumber air menjadi selaras dan saling menunjang, yang menghasilkan pemanfaatan sumber-sumber air yang berwawasan lingkungan dan bersifat berkelanjutan.

Untuk mendapatkan kontinuitas dan jaminan pasokan air dari mata air Umbulan, yang

akan menjadi sumber air baku untuk kota-kota Gresik, Surabaya, Sidoarjo dan Pasuruan, perlu dilakukan studi untuk melihat perilaku kondisi air tanah dengan pengambilan air tanah yang tidak terkontrol. Untuk menjawab persoalan yang akan muncul maka dilakukan pemodelan air tanah yang ada di Cekungan Air Tanah (CAT) menggunakan Umbulan dengan program MODFLOW agar supaya dapat melihat perubahan kondisi air tanah dengan pengambilan yang ektrims tersebut. Secara umum tujuan kegiatan ini adalah untuk memodelkan kondisi air tanah di CAT Umbulan dengan menggunakan program MODFLOW sehingga mendapatkan gambaran muka air tanah yang terjadi dengan skenario pengambilan air tanah yang tidak terkontrol dengan tujuan agar dapat mengetahui konservasi pencegahan dan terjadinya eksplotasi pengambilan air tanah. Penggunaan program MODFLOW untuk menilai kondisi air tanah telah banyak dilakukan dan salah satunya seperti yang diaplikasikan di Negara Sudan pada Daerah Aliran Sungai Gash untuk memodelkan air tanah regional (Elkrail, et al. 2008). Lokasi kegiatan penelitian adalah hanya meliputi Kabupaten dan Kota Pasuruan yakni daerah CAT Umbulan, seperti ditampilkan pada Gambar 1 peta wilayah daerah Umbulan dan sekitarnya.

Gambar 1 Peta wilayah penelitian

TINIAUAN PUSTAKA

Pemodelan air tanah adalah peniruan kondisi sistem air tanah dengan cara penyederhanaan sistem air tanah dan upaya manusia dalam pengelolaan yang berkaitan dengan air tanah. Prinsip pemodelan air tanah adalah untuk memperkirakan seberapa jauh

perubahan kondisi muka air tanah akan terjadi di masa mendatang akibat pola pengembangan air tanah yang sedang berlangsung atau akibat usulan pengelolaan baru.

Evaluasi kondisi air tanah saat ini merupakan intrepetasi hasil simulasi kondisi saat ini dan evaluasi kondisi air tanah di masa mendatang merupakan intrepretasi hasil simulasi kondisi air tanah di kemudian hari. Peramalan dampak akibat perubahan alam dan aktifitas manusia terhadap sistem air tanah, dipakai sebagai bahan pertimbangan untuk usulan pengembangan selanjutnya.

Pemodelan air tanah mengalami perkembangan. Berbagai cara untuk menilai kondisi air tanah dikembangkan, misalnya laju imbuhan air tanah dihitung dengan GROWA yang telah diterapkan sebagai kondisi batas imbuhan untuk model airtanah regional Rurscholle. Model ini mensimulasi dinamika air tanah pada akuifer Pleistocene dari wilayah pertambangan batubara Lower Rhine, Jerman (Herrmann, et al. 2009). He, et al. (2008) juga melakukan simulasi untuk mendapatkan muka air tanah dan variabel dari dari keseimbangan air pada suatu DAS dengan menggunakan pemodelan imbuhan airtanah semi-distributed. Untuk menilai kinerja model tersebut maka dilakukan kalibrasi terhadap model yang digunakan, Rojanschi, et.al. (2006) melakukan perbandingan untuk menilai kinerja suatu model berdasarkan hasil kalibrasi yang dilakukan antara model MODFLOW dengan model Storage Cascade dengan metode GLUE.

1 Kondisi MA Tanah Dangkal di CAT Umbulan

Sumur dangkal berupa sumur gali penduduk banyak ditemukan di wilayah Kecamatan Wonorejo, dengan tinggi muka air mulai 1,4 m sampai 17,1 m bmt dan di wilayah Kecamatan Grati 0,6 m sampai yang paling dalam 13 m bmt. Muka air tanah pada sumur gali penduduk di Kecamatan Gondang Wetan, Gading Rejo, Rembang dan Winongan pada umumnya cukup dangkal yaitu < 5 m dari muka tanah, dengan kedalaman maksimum 7,82 m.

Nippon Koei (1986) telah melakukan pengukuran muka air tanah dangkal dan pada tahun 2001 ESDM melakukan kembali pengukuran muka air tanah dangkal dari sumur gali. Dari kedua pengukuran tersebut terdeteksi adanya pergeseran pola garis kontour muka air tanah 20 m dari Utara ke Selatan. Kedudukan muka air tanah dangkal yang diukur melalui sumur gali di daerah dataran Pasuruan adalah 0,2 – 6,0 mdmt, sedangkan di daerah perbukitan 7,4 – 17,1 mdmt (PLG, 2006).

Secara umum berdasarkan pengkuran, pola muka air tanah dangkal pada periode tahun 2007-2008 digambarkan pada peta kontour muka air, dengan arah aliran dari Selatan ke Utara. Pola muka air tanah bebas tahun 2006 dan tahun 2007 tidak berubah, sedangkan kedudukan muka air tanah bebas sedikit bergeser dari Utara ke arah Selatan 1-5 m.

2 Sistem Akuifer Cekungan Air Tanah Umbulan

Gambaran sistem akuifer di cekungan air tanah Umbulan dapat dikelompokkan menjadi 2 lapisan yaitu; di bagian atas merupakan akuifer bebas dan dibagian bawah merupakan akuifer terkekang. Berdasarkan hasil pendugaan geolistrik, akuifer dijumpai bebas mempunyai kedalaman sangat beragam dari 3 m sampai 20 mdmt (di bawah muka tanah). sedangkan akuifer terkekang terdiri dari akuifer terkekang I dengan kedalaman dari 3 m sampai 35 mdmt dan dengan ketebalan rata-rata 10 m sampai 30 m. Kelompok akuifer terkekang II, mempunyai kedalaman pada interval kedalaman 22 m sampai 75 mdmt dan ketebalan akuifer bervariasi antara 24 m sampai 94 m, sedangkan kisaran umum adalah 50 m sampai 70 m. Akuifer utama yang berperan pada cekungan air tanah Umbulan adalah akuifer terkekang I dan II.

METODOLOGI

Metode yang dilakukan pada penelitian ini pemodelan air tanah dengan menggunakan model dari VISUAL MODFLOW. Program ini digunanakan untuk melihat hasil prilaku pergerakan air tanah. Untuk program MODFLOW ada beberapa mesin atau algoritma perhitungan yang tersedia yaitu MODFLOW 96, MODFLOW 2000, MODFLOW 2005, MODFLOW SURFACT, dan MODFLOW Seawat 2000. Untuk studi, algoritma yang digunakan menggunakan mesin MODFLOW **SURFACT** dengan tipe simulasi unsteady state flow (aliran tak langgeng). Berdasarkan hasil simulasi setelah dilakukan kalibrasi dan verifikasi model tersebut, dapat dilihat hasil keluaran model berupa pergerakan besarnya kecepatan aliran air tanah baik besar maupun arah aliran yang terjadi, serta proses muka airnya.

Model simulasi air tanah yang digunakan pada studi ini adalah menggunakan software Visual MODFLOW Premium versi 4.3. Perangkat lunak ini merupakan sebuah program komputer yang dapat mensimulasikan aliran tanah tiga dimensi yang melewati media porous dengan menggunakan metode beda hingga (finite-difference) (McDonald dan Harbaugh, 1988).

1 Dasar Teoritis MODFLOW

Proses terjadinya aliran air tanah, dijelaskan dengan aspek dasar teori air tanah. Persamaan aliran yang digunakan dalam program MODFLOW adalah dengan mengasumsikan sebuah kotak dimana aliran yang masuk ke dalam kotak dari berbagai arah sumbu dikurangi oleh aliran yang ke luar kotak dari berbagai arah sumbu sama dengan nol, yaitu untuk aliran

langgeng (*steady state groundwater flow*), seperti yang terlihat berikut ini (Harbaugh, et al. 2000):

$$\begin{split} &\frac{\partial v_x}{\partial x} \Delta x.\Delta z.\Delta y + \frac{\partial v_y}{\partial y} \Delta y.\Delta z.\Delta x + \frac{\partial v_z}{\partial z} \Delta z.\Delta x.\Delta y = 0 \\ &\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0 \\ &v_x = -k \frac{\partial \phi}{\partial x} \ v_y = -k \frac{\partial \phi}{\partial y} \ v_z = -k \frac{\partial \phi}{\partial z} \\ &\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \ \text{atau} \ \nabla^2 \phi = 0 \end{split}$$

Persamaan umum yang digunakan untuk aliran air tanah lekang yang diadopsi oleh MODFLOW adalah sebagai berikut (Harbaugh, et al. 2000):

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) + W = S_s \frac{\partial h}{\partial t}$$

dengan keterangan K_{xx} , K_{yy} , K_{zz} adalah nilai kelulusan hidraulik arah sumbu x, y, dan z, h adalah tinggi potensiometrik, W adalah fluks volume, S_s adalah tampungan spesifik pada material porus.

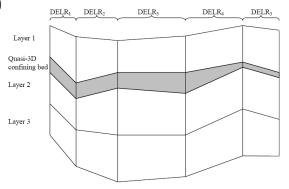
Persamaan tersebut di atas dapat diselesaikan dengan menggunakan beda hingga (finite difference) yang dibagi berdasarkan grid. Persamaan yang dihasilkan dengan menggunakan beda hingga untuk aliran tak langgeng adalah sebagai berikut (Harbaugh, et al. 2000):

$$\begin{split} & \mathsf{CR}_{i,j-\frac{1}{2},k} \big(h^m_{i,j-1,k} - h^m_{i,j,k} \big) + \mathsf{CR}_{i,j+\frac{1}{2},k} \big(h^m_{i,j+1,k} - h^m_{i,j,k} \big) \\ & + \mathsf{CC}_{i-\frac{1}{2},j,k} \big(h^m_{i-1,j,k} - h^m_{i,j,k} \big) + \mathsf{CC}_{i+\frac{1}{2},j,k} \big(h^m_{i+1,j,k} - h^m_{i,j,k} \big) \\ & + \mathsf{CV}_{i,j,k-\frac{1}{2}} \big(h^m_{i,j,k-1} - h^m_{i,j,k} \big) + \mathsf{CV}_{i,j,k+\frac{1}{2}} \big(h^m_{i,j,k+1} - h^m_{i,j,k} \big) \\ & + P_{i,j,k} h^m_{i,j,k} + Q_{i,j,k} = \mathsf{SS}_{i,j,k} \big(\mathsf{DELR}_j \, x \, \mathsf{DELC}_i \, x \, \mathsf{THICK}_{i,j,k} \big) \\ & \frac{h^m_{i,j,k} - h^{m-1}_{i,j,k}}{t^m - t^{m-1}} \end{split}$$

Keterangan:


 $h_{i,j,k}^{m}$, tinggi pada kotak *cell* i,j,k pada waktu m (m); CV,CR,CC,konduktivitas hidraulik atau branch konduktivitas antara node i,j,k dan node tetangganya (m²/s); $P_{i,j,k}$, jumlah koefisien ketinggian dari sumbernya dan keluarannya (m²/s); $Q_{i,j,k}$, jumlah konstan dari sumbernya dan keluarannya dengan $Q_{i,i,k}$ < 0.0 untuk aliran

keluar dari sistem air tanah dan $Q_{i,j,k} > 0.0$ untuk aliran masuk dalam sistem (m³/s); $SS_{i,j,k}$, spesifik storage (1/m); $DELR_J$, lebar cell pada kolom j pada semua baris (m); $DELC_I$, lebar cell pada baris i pada semua kolom (m); $THICK_{I,J,K}$, tebal dari setiap cell i,j,k (m); t^m , waktu pada waktu m (detik).


Persamaan ini merupakan bentuk diskritisasi dari persamaan sebelumnya yang bersifat kontinu (atau menerus). Jika dijumpai dua sistem akuifer dengan sekat akuitar di antara keduanya, maka rumus tersebut di atas berlaku untuk masing-masing akuifer dengan datanya sendiri-sendiri (termasuk kondisi batasnya) ditambah dengan rumus aliran air tanah yang melalui akuitar.

Untuk persamaan aliran langgeng maka persamaan yang diatas dinyatakan dalam bentuk persamaan berikut ini (Harbaugh, et al. 2000):

$$\begin{split} & \operatorname{CR}_{i,j-\frac{1}{2},k} \big(h^{m}_{i,j-1,k} - h^{m}_{i,j,k} \big) + \operatorname{CR}_{i,j+\frac{1}{2},k} \big(h^{m}_{i,j+1,k} - h^{m}_{i,j,k} \big) \\ & + \operatorname{CC}_{i-\frac{1}{2},j,k} \big(h^{m}_{i-1,j,k} - h^{m}_{i,j,k} \big) + \operatorname{CC}_{i+\frac{1}{2},j,k} \big(h^{m}_{i+1,j,k} - h^{m}_{i,j,k} \big) \\ & + \operatorname{CV}_{i,j,k-\frac{1}{2}} \big(h^{m}_{i,j,k-1} - h^{m}_{i,j,k} \big) + \operatorname{CV}_{i,j,k+\frac{1}{2}} \big(h^{m}_{i,j,k+1} - h^{m}_{i,j,k} \big) \\ & + \operatorname{P}_{i,i,k} h^{m}_{i,i,k} + \operatorname{Q}_{i,i,k} = 0 \end{split}$$

Gambar 2 Tampilan segmentasi dari program MODFLOW

Gambar 3 Penampang melintang dari sistem akuifer berdasarkan baris

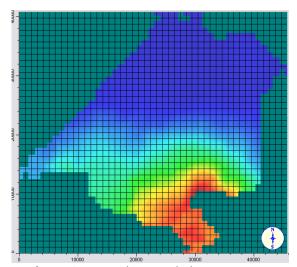
HASIL DAN PEMBAHASAN

Untuk melihat perilaku aliran air tanah di Cekungan Air Tanah (CAT) Umbulan maka dilakukan pemodelan dengan menggunakan persamaan-persamaan yang telah umum digunakan. Pemodelan air tanah merupakan pendekatan suatu sistem yang ada di di dalam tanah. Jadi proses pemodelan tersebut sedapat mungkin dilakukan peniruan sistem aliran air tanah yang terjadi dengan melihat kondisi kenyataan di lapangan.

Agar supaya dapat melakukan peniruan sistem tersebut maka diperlukan karakteristik dari daerah tersebut yaitu berupa parameter air tanah. Parameter tersebut merupakan masukan dari program MODFLOW agar dapat dijalankan. Pemodelan air tanah dengan MODFLOW dapat berjalan apabila data yang diperlukan tersedia, untuk itu maka diperlukan pengumpulan data yang berkaitan dengan air tanah di CAT Umbulan.

Pengumpulan data dilakukan untuk memperoleh informasi yang berkaitan dengan penggunaan air tanah yaitu yang berkaitan dengan eksploitasi air tanah untuk berbagai keperluan. Pemanfaatan air tanah di masyarakat sangat banyak dan secara signifikan pemanfaatan air tanah dilakukan oleh industri. Data yang telah berhasil dikumpulkan terdiri sumur gali dan sumur bor yang diperoleh dari P2AT dan juga dari ESDM yang berkaitan dengan izin perolehan pemanfaatan air tanah serta kajian atau studi yang berkaitan dengan air tanah pada tahuntahun sebelumnya.

1 Model Air Tanah Umbulan


Pemodelan airtanah merupakan suatu pendekatan untuk menirukan keadaan pergerakan air tanah baik secara vertical maupun horizontal. Secara prinsip bahwa pemodelan ini menggunakan kaidah - kaidah atau persamaan telah umum digunakan yang untuk memperkirakan besaran maupun distribusi pergerakan air tanah. Pada lokasi pemodelan terdiri dari dua akuifer dengan tiga lapisan dengan kedalaman lapisan akuifer yang dibuat sekitar 100 m dan lapisan diatara akuifer sekiatr 1m. Untuk menirukan pergerakan air tanah seperti yang telah disebutkan bahasan sebelumnya menggunakan program MODFLOW 4.3 maka perlu untuk melakukan inputing data-data yang diperlukan.

2 Data Input untuk Pemodelan.

1) Data Grid Model

Sebagai langkah awal dalam pemodelan tersebut adalah melakukan pembagian grid atau segmentasi terhadap CAT Umbulan dengan ukuran yang diinginkan. Adapun ukuran grid yang digunakan adalah sebesar 1 km x 1 km dengan luas CAT Umbulan 1012.62 km².

Pembagian lokasi studi menjadi ukuran yang lebih kecil diharapkan agar supaya parameter dan karakteristik dari grid tersebut menjadi lebih homogen. Adapun bentuk sistem grid dari lokasi CAT Umbulan dapat dilihat pada Gambar 4.

Gambar 4 Sistem Grid CAT Umbulan

Selain dari ukuran grid, juga harus ditentukan sistem akuifer yang terjadi di CAT Umbulan. Seperti yang telah dijelaskan bahwa di CAT Umbulan terdiri dari dua akuifer maka dalam sistem pemodelan digunakan tiga lapisan yaitu lapisan pertama dan lapisan ketiga sebagai akuifer dan lapisan kedua sebagai lapisan yang kedap.

2) Data Sumur Bor (Pumping Well)

Data sumur bor (pumping well) merupakan salah satu parameter utama yang diperlukan dalam pemodelan di CAT Umbulan. Pumping well tersebut dapat berupa pengambilan air maupun sebagai peresapan air ke dalam tanah. Karakteristik dari setiap pumping well meliputi data debit pengambilan dan juga peresepan air beserta periodenya. Selain itu juga diperlukan interval screen dari setiap sumur bor tersebut. Untuk lokasi studi, data sumur bor di lokasi studi hanya tersebar pada daerah perkotaan sehingga terpusat hanya pada beberapa lokasi saja. Data tersebut dimasukan melalui pumping well yang terdiri dari 144 buah yang diperoleh dari berbagai sumber termasuk P2AT dan juga dari industri vang diperoleh dari ESDM. Keseluruhan data tersebut berdiri sejak tahun 1978 sampai dengan sekarang. Berdasarkan data yang terkumpul diperoleh informasi sumur bor sekitar 31 buah untuk periode tahun 1978 sampai dengan 1990, sementara periode penambahan sampai pada tahun 1995 ada sekitar 13 buah dan sampai pada tahun 2000 ada penambahan sekitar 60 buah dan sampai pada tahun 2006 terjadi penambahan 31 buah. Data pumping well yang digunakan dapat dilihat pada Tabel 1 sampai pada Tabel 4. Adapun penyebaran dari pumping well di CAT Umbulan dapat dilihat pada

Gambar 5 dan juga tampilan masukan data yang berkaitan dengan *pumping well* seperti pada Gambar 6.

Tabel 1 Data pumping well mulai dari tahun 1978 sampai dengan 1990

Na	No	Al	amat	Koo	rdinat	Karakteristik Sumur	
No	Sumur	Kecamatan	Desa	х	Y	Q (I/det)	
1	2	4	5	7.00000	8.00000	16	
1	SDPS 13	Beji	Gunungsari	690750.00000	9161200.00000	32.5	
2	SDPS 14	Gondang Wetan	Karang Sentul	711142.70000	9145695.70886	20.3	
3	SDPS 15	Kejayan	Tanggulangin	705074.53639	9147490.10561	21.66	
4	SDPS 16	Kraton	Kebotohan	725213.44888	9148550.77414	4.2	
5	SDPS 21	Kejayan	Sladi	707722.89185	9145810.49755	29.4	
6	SDPS 28	Pasrepan	Pohgading	710224.90170	9142779.67245	25.49	
7	SDPS 29	Grati	Kambingan rejo	701937.15019	9155104.55239	15.12	
8	SDPS 30	Nguling	Watestani	727900.00000	9144500.00000	2.47	
9	SDPS 91	Gondang Wetan	Tebas	710132.40242	9144295.46856	30.49	
10	SDPS 92	Gondang Wetan	Kersikan	711337.22057	9144787.81308	60.72	
11	SDPS 93	Nguling	Watestani	727026.24599	9143699.05462	40.04	
12	SDPS 117	Kejayan	Randugong	705458.45034	9145457.65293	60.19	
13	SDPS 118	Nguling	Watestani	727702.22338	9144525.44517	40.07	
14	SDPS 119	Nguling	Wotgalih	726444.13219	9144940.83180	40.07	
15	SDPS 137	Nguling	Watestani	728302.89550	9145291.35559	50.11	
16	SDPS 153	Kejayan	Lorokan	711043.85276	9145795.70382	32.91	
17	SDPS 154	Kraton	Gambir Kuning	707335.93581	9148135.01513	44.01	
18	SDPS 155	Nguling	Walestani	727335.29258	9144174.33905	60.03	
19	SDPS 159	Kejayan	Tundo Soro	708323.71534	9145202.79849	55.08	
20	SDPS 160	Kraton	Mulyo Rejo	707139.95647	9148733.16959	22.00	
21	SDPS 161	Kraton	Pukul	706928.56985	9148335.90273	60.03	
22	SDPS 162	Kejayan	Wangkal Wetan	708717.50435	9143693.42396	55.08	
23	SDPS 257	Gondang Wetan	Bajangan	710536.77273	9145897.52856	60.55	
24	SDPS 258	Gondang Wetan	Bajangan	710841.90490	9147511.09636	60.03	
25	SDPS 259	Gondang Wetan	Gayam	710698.01319	9147409.97735	50.91	
26	SDPS 260	Gondang Wetan	Gayam	711640.09394	9145892.57418	70.67	
27	SDPS 261	Gondang Wetan	Tebas	711037.09257	9144291.40812	70.44	
28	SDPS 262	Nguling	Sedarum	729209.03815	9144206.15284	26.75	
29	SDPS 263	Nguling	Wotgalih	725752.37068	9144498.35919	45.02	
30	SDPS 264	Grati	Prokimal Barat	721587.97287	9147262.65101	25.65	
31	SDPS 265	Grati	Prokimal Timur	723494.00244	9146645.23461	24.34	

3) Karakteristik Hidraulik Akuifer

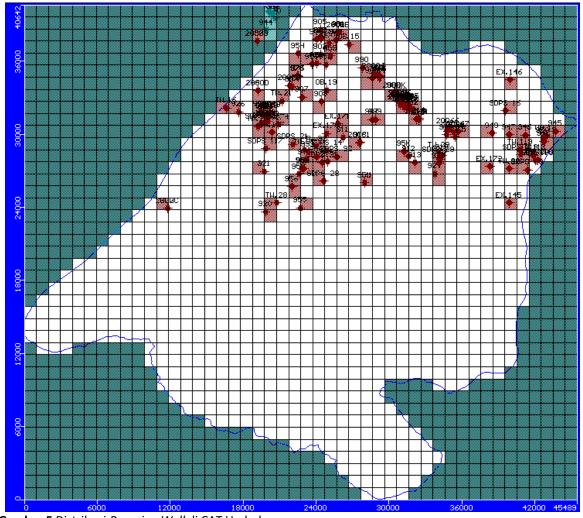
Karakteristik hidraulik akuifer yang berperan pada program MODFLOW adalah conductivity, storage, initial head dan vadose zone. Pada pemodelan air tanah di CAT Umbulan digunakan karakteristik konduktivitas, kapasitas dan initial head sebagai parameter model untuk melakukan simulasi. Adapun lebih jelasnya dari setiap data tersebut dijelaskan berikut ini.

Konduktivitas atau Koefisien Kelulusan (k = Permeability), merupakan besaran yang menunjukkan jumlah aliran per satuan luas permukaan di bawah pengaruh gradien hidraulik dengan satuan L^3 / L^2 x t = L / t. Dari hasil evaluasi data pemompaan uji semua sumur PAT menunjukkan bahwa sumur-sumur di wilayah CAT Umbulan umumnya mempunyai nilai koefisien kelulusan rata-rata antara 1 - 10 m/hari seperti pada Tabel 5. Nilai koefisien kelulusan di atas berdasarkan klasifikasi USGS

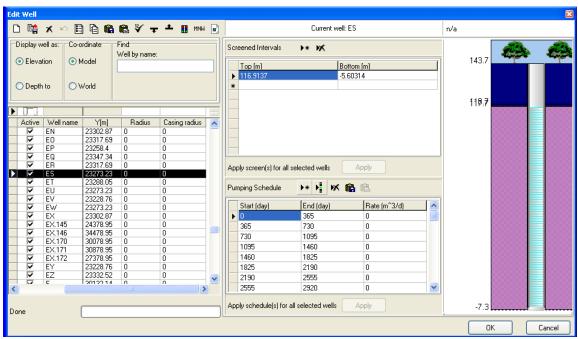
termasuk kelulusan sedang sampai tinggi. Menurut Illman, et al. (2010) bahwa nilai konduktivitas merupakan salah satu komponen dalam pemodelan air tanah yang sangat berperan penting pada kondisi aliran *steady*, dan beberapa pendekatan dilakukan untuk menentukan

besarnya nilai konduktivitas pada suatu wilayah. Straface, et al. (2010) menghitung nilai konduktivitas hidraulik dan *water table* pada model skala laboratorium dengan metode *means of the self potential*.

Tabel 2 Data pumping well mulai dari tahun 1991 sampai dengan 1995


Na ID	Nama	Alar	Alamat		rdinat	Karakteristik Sumur	
No ID	Sumur	Kecamatan	Desa	Х	Υ	Q (m3/hari)	
95a	PT. BOMA BISMA INDRA	BugulKidul	Bugur Lor	711450	9154950	200	
95b	PT. BOMA BISMA INDRA	BugulKidul	Bugur Lor	711450	9154950	200	
95c	catur mekar perkasa	Kraton	Gerongan	703895	9158426	100	
95d	Bumi menggala	Purwodadi	Semut	694589	9140235	400	
95e	KOLAM RENANG PASURUAN	Purworejo	Ds gentong	710418	9152343	275	
95f	KOLAM RENANG PASURUAN	Purworejo	Ds gentong	710418	9152343	275	
95g	KOLAM RENANG PASURUAN	Purworejo	Ds gentong	710828	9153073	275	
95h	Pers. Tahu Kebon agung	Purworejo	Kebon Agung	708150	9153260	4212	
95i	Pers. Tahu Mitra	Purworejo	Kebon Agung	709675	9152484	1812	
95j	Pers. Tahu Terang	Purworejo	Kebon Agung	709267	9152397	3684	
95k	Bambang supeno	Winongan	Bandaran	716864	9145224	200	
951	Yongky winarto	Winongan	Sidepan	713642	9142635	200	
95m	Balai Benih Ikan	Winongan	sidepan	713642	9142635	300.00	

Tabel 3 Data pumping well mulai dari tahun 1995 sampai dengan 2000


No ID	Nama	Alamat	Kod	ordinat	Karakteristik Sumur
No ID	Sumur	Desa	Х	Υ	Q (m3/hari)
2000a	P.3.GI PASURUAN	Bugul Kidul	710696	9154121	200
2000b	PT. BOMA BISMA INDRA	BugulKidul	711450	9154950	200
2000c	Batu kali welang ampuh	Kejayan	697420	9140560	216
2000d	PT BANGUN PERKASA	Pohjentrek	704852	9150224	100
2000e	Eka timur raya	Purwodadi	692530	9136570	300
2000f	PAK HARTO KOLOPAKING	Purwodadi	692136	9136429	100
2000g	Rickio indonesia	Purwodadi	694520	9140280	300
2000h	Super unggas jaya	Purwodadi	694523	9140286	325
2000i	PT. PUTRA TEDJA SAMPOERNA	Rejoso	716796	9149055	100
2000j	MUSHOLLA	Rejoso	714354	9151620	100
2000k	Bukit mustika persaba	Rejoso	716097	9150026	10
20001	PT. Cargil		689950	9162000	300
2000m	PT. Cargil		689950	9162000	86
2000n	PT. Cargil		689950	9162000	496
2000o	PT. CATUR MEKAR PERKASA		704807	9154300	300
2000p	PT INDONESIA SETRA USAHA		693138	9141645	300
2000q	PT. BERKAT		688550	9157550	300
2000r	PT. BERKAT		688550	9157550	300
2000s	PT. BERKAT		688550	9157550	300
2000t	PT. BHAKTI ARGO		694869	9140805	300

Tabel 4 Data pumping well mulai dari tahun 2001 sampai dengan 2006

	Nama	Ala		rdinat	Karakteristik Sumur	
No ID	Sumur	Kecamatan	Desa	Х	Υ	Q (m3/hari)
20061	Tirta investama	Gondang Wetan	keboncandi	713208	9145912	60
20062	PT. Perkebunan Nusantara XI	Grati	Kedawungkulon	717851	9147854	715
20063	PT. Perkebunan Nusantara XI	Grati	Kedawungkulon	717851	9147854	288
20064	PT. Perkebunan Nusantara XI	Grati	Kedawungkulon	717851	9147854	288
20065	PDAM Unit Grati	Grati	Ranuklindungan	721038	9146412	10
20066	KUTT Suka Makmur	Grati	Sumber Agung	720475	9147083	125
20067	PT. Patal Grati	Grati	Sumber Agung	721332	9146863	432
20068	PT. Patal Grati	Grati	Sumber Agung	720928	9146788	375
20069	Gema ista raya	Kejayan	Tanggulangin	705822	9148413	80
20070	PT BB PRO logistik	Kejayan	Tanggulangin	705595	9148332	100
20071	PT. Nestle Indonesia	Kejayan	Tanggulangin	705503	9147695	500
20072	PT. Nestle Indonesia	Kejayan	Tanggulangin	705377	9147521	500
20073	PT. Nestle Indonesia	Kejayan	Tanggulangin	705694	9147690	864
20074	PT. Nestle Indonesia	Kejayan	Tanggulangin	706522	9147421	500
20075	catur mekar perkasa	Kraton	Gerongan	703895	9158426	100
20076	PT.COATS REJO INDONESIA	Pohjentrek	Pleret	707430	9150634	200
20077	PT.COATS REJO INDONESIA	Pohjentrek	Pleret	707452	9150635	200
20078	PT.GUNUNG RINGGIT	Pohjentrek	Pleret	707425	9150624	200
20079	PT. CATUR MEKAR PERKASA	Pohjentrek	Sungai Kulon	704807	9154300	200
20080	UD JATI INDAH	Pohjentrek	Sungai Kulon	704807	9154300	100
20081	PT. Multi Breeder Adirama Indonesia	Purwodadi	Dawuhan Sengon	696780	9134560	120
20082	PT. Multi Breeder Adirama Indonesia	Purwodadi	Dawuhan Sengon	696780	9134560	200
20083	cheil samsung indonesia	Rejoso	Arjosari	716527	9149055	600
20084	cheil samsung indonesia	Rejoso	Arjosari	717141	9148974	130
20085	cheil samsung indonesia	Rejoso	Arjosari	717163	9149115	1680
20086	cheil samsung indonesia	Rejoso	Arjosari	716556	9149401	600
20087	cheil samsung indonesia	Rejoso	Arjosari	717141	9148779	600
20088	cheil samsung indonesia	Rejoso	Arjosari	716752	9149036	0
20089	cheil samsung indonesia	Rejoso	Arjosari	716470	9149253	400
20090	cheil samsung indonesia	Rejoso	Arjosari	716855	9148918	600
20091	Philip seafood indonesia	Rejoso	Arjosari	717299	9148885	110

Gambar 5 Distribusi Pumping Well di CAT Umbulan

Gambar 6 Tampilan Input untuk Pumping Well

Tabel 5 Koefisien Kelulusan Sumur Bor PAT pada CAT Umbulan

No	Nilai K	Jml Sumur	%	Kelas
	(m/hari)			
1.	< 10 -3	-	-	-
2.	10 -3 - 10 -2	-	-	Rendah
3.	102 - 10 -1	1	1.64	-
4.	10 ⁻¹ – 10 ⁰	12	19.67	Sedang
5.	10 ° - 10 ¹	44	72.13	-
6.	10 ¹ – 10 ²	4	6.56	Tinggi
7.	> 10 ²	-	-	-
	Jumlah	61	100	

Klasifikasi USGS

Untuk lebih jelasnya nilai konduktivitas dari setiap sumur tersebut dapat dilihat pada Tabel 6.

Kapasitas (S= storage), yang digunakan dalam pemodelan ini adalah dengan menggunakan data yang homogen diseluruh lokasi CAT Umbulan secara horizontal namun berbeda secara vertikal. Kapasitas (storage) yang digunakan dalam program MODFLOW terdiri dari kapasitas spesifik (specific storage), specific yield, porositas efektif dan total porositas. Adapun nilai dari setiap variabel tersebut adalah sebagai berikut:

Kapasitas spesifik (Ss)= 10⁻⁵ (1/m)

- Specific Yield (Sy) = 0.2 - Eff. Porosity = 0.15 - dan total porosity = 0.3

Initial Head, yang digunakan dalam pemodelan ini adalah menggunakan cara trial and error dengan melakukan penyesuaian hasil akhir muka air tanah dari pemodelan pada tahun 1986 dengan data muka air tanah yang dihasilkan dari Nipon Koei. Dengan diperolehnya hasil muka air yang sesuai, maka selanjutnya nilai head awal yang telah digunakan tersebut selanjutnya digunakan untuk pemodelan pada tahun berikutnya. Pemodelan yang digunakan untuk tahun berikutnya merupakan perpanjangan data dan periode simulasi model sampai pada tahun 2006. Untuk pengembangan model dengan berbagai skenario digunakan berdasarkan simulasi sampai pada tahun 2006 ditambah dengan penambahan pengambilan air tanah berupa pumping well dengan periode simulasi yang tetap.

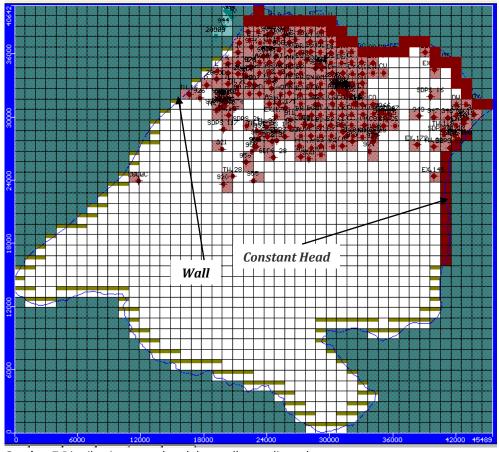
Transmisibilitas (T), atau keterusan adalah kecepatan aliran di bawah gradien hidraulik per satuan luas permukaan yang menembus seluruh ketebalan akuifer. Ringkasan hasil evaluasi nilai keterusan untuk sumur-sumur sekitar Umbulan dijelaskan pada Tabel 7. Angka pada tabel di atas menginformasikan bahwa dari nilai koefisien keterusan (T) sumur-sumur di wilayah ini dari sisi kebutuhan domestik memiliki potensi yang

besar, karena 46 sumur (75,41 %) mempunyai nilai T antara 10 – 100 m^2 /hari.

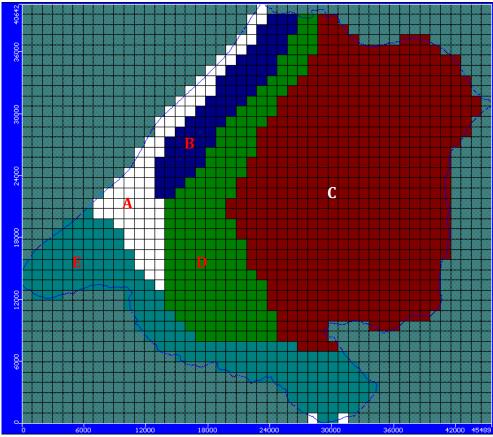
Tabel 7 Koefisien keterusan sumur bor di CAT

Nilai T	Iml		Kelas Potensi			
(m²/hari)	Jml Sumur %		Domes tik	Irigasi		
< 1	-	-	Kecil	-		
$1 - 10^{1}$	4	6,56	Sedang	-		
$10^1 - 10^2$	46	75,41	Besar	Kecil		
$10^2 - 10^3$	9	14,75	-	Sedan		
> 10 ³	2	3,28	-	g		
				Besar		
Jumlah	61	100				

Catatan : Berdasarkan klasifikasi USGS


4) Kondisi Batas (Boundary Conditions)

Kondisi batas atau boundary conditions yang ada di program MODFLOW 4.3 terdiri dari 8 variabel yaitu constant head, river, stream, general head, drain, wall, recharge dan evapotranspirastion. Kondisi batas ini tidak sekaligus semua variabel digunakan pada waktu melakukan pemodelan namun tergantung pada kondisi lokasi dan ketersediaan data. Untuk kasus di CAT Umbulan kondisi batas yang digunakan adalah adanya constant head, wall dan juga recharge.


Constant head digunakan pada grid yang berada di sepanjang daerah pesisir pantai sampai pada batas sebelah barat dari CAT yang merupakan sebuah sungai. Selain itu juga digunakan Wall yang digunakan untuk membatasi wilayah sebelah timur sampai ke selatan yang digunakan untuk membatasi pengaruh di luar dari sistem CAT Umbulan (Gambar 7). Sedangkan Recharge digunakan pada seluruh grid yang berada pada CAT Umbulan. Recharge tersebut berbeda-beda berdasarkan sub daerah aliran sungai yang berada dalam CAT tersebut. Nilai recharge yang digunakan diperoleh berdasarkan hasil analisa hidrologi dengan menggunakan program NAM -MIKE 11. Distribusi recharge di CAT Umbulan dapat dilihat pada Gambar 8.

Tabel 6 Koefisien Kelulusan Sumur Bor PAT pada CAT Umbulan

	1 6 Koefisien Kelulusan Su								V (malla ani)
No	P.3.GI PASURUAN	710606	y 9154121	K (m/hari) 19.31	No 72	PT. OMEGA MAS	708246	y 9143343	K (m/hari) 76.87
	PT. BOMA BISMA INDRA		9155055	19.31	73	PT. SUMBER AYU SEKAR MAKMUR	708980	9145150	76.87
	PT. BOMA BISMA INDRA		9154950	19.31	74	Sami-sami	708624	9143820	76.87
4	PT. BOMA BISMA INDRA		9154950	19.31	75	Perorangan	708352	9140583	1.58
5	PT. BOMA BISMA INDRA	711450	9154950	19.31	76	CV. DUTA BANGSA	707660	9142325	1.58
6	PT. TIRTA BAHAGIA (DW1)		9153192	19.31	77	Kolam Renang Katak Riang	707650	9150550	19.31
7	PT. TIRTA BAHAGIA (DW2)		9153192	19.31	78	PT.COATS REJO INDONESIA	707430	9150634	19.31
8	Minir Hadi		9154426	82.54	79	PT.COATS REJO INDONESIA	707452	9150635	19.31
9	Pab. Es Pancur Trisno		9155208	82.54	80	PT.GUNUNG RINGGIT	707425	9150624	19.31
10	PD. Laju SPBU 54.671.27		9154426 9149664	82.54 47.96	81 82	PT. CATUR MEKAR PERKASA UD JATI INDAH	704807 704807	9154300 9154300	90.45 90.45
12	Tirta investama		9145912	47.96	83	PT BANGUN PERKASA	704852	9150224	69.00
13	KOLAM RENANG TIRTA TIARA		9149331	90.45	84	Eka timur raya	692530	9136570	39.21
	Pers. Tahu Ojolali		9144745	23.68	85	PAK HARTO KOLOPAKING	692136	9136429	39.21
15	PT. Rikio Indonesia	688350	9135400	48.36	86	PT. AMBICO	685400	9136400	39.21
16	KOLAM RENANG MBAH SEMARANG	711855	9146379	97.81	87	PT. Conbioc Indonesia	691389	9136866	39.21
17	CUCI MOBIL / SUWARTO		9144827	66.21	88	PT. Conbioc Indonesia	691750	9137600	39.21
18	CV. MUSIKA		9144308	66.21	89	PT. Multi Breeder Adirama Indonesia Tbk	696780	9134560	40.62
	PG. KEDAWUNG		9147973	62.09	90	PT. Multi Breeder Adirama Indonesia Tbk	696780	9134560	40.62
20	PG. KEDAWUNG PG. KEDAWUNG		9147809 9147914	62.09 62.09	91 92	Industri colagen indonesia Industri colagen indonesia	690258 690354	9136570 9136420	59.22 59.22
22	PT. Perkebunan Nusantara XI		9147854	62.09	93	PT. Delta Surya Tekstil	690964	9136210	59.22
	PT. Perkebunan Nusantara XI		9147854	62.09	94	PT. Multi Briben IV	691319	9137367	59.22
	PT. Perkebunan Nusantara XI		9147854	62.09	95	Bakti agro	694286	9140784	90.08
25	PDAM Unit Grati		9146412	9.89	96	Bumi menggala	694589	9140235	90.08
26	KUTT Suka Makmur	720475	9147083	57.53	97	PAK ANDRI	694334	9140344	90.08
27	PT. Patal Grati		9146863	57.53	98	Rickio indonesia	694520	9140280	90.08
	PT. Patal Grati		9146788	57.53	99	Super unggas jaya	694523	9140286	90.08
29	Perorangan		9144382	44.76	100	ud bumi menggala	694860	9140250	90.08
	Perorangan		9145964	308.16	101	CV. Cipto	711272	9154398	82.55
31	Perorangan wonokoyo benerwojo		9144904	358.10 70.45	102 103	CV. Cipto KOLAM RENANG PASURUAN	711272 710418	9154398 9152343	82.55 82.55
33	Wonokoyo cobanjoyo		9143586	90.08	103	KOLAM RENANG PASURUAN	710418	9152343	82.55
34	Batu kali welang ampuh		9140560	24.37	105	KOLAM RENANG PASURUAN	710828	9153073	82.55
35	TERNAK UNGGUL indah		9140560	24.37	106	Pers. Tahu Kebon agung	708150	9153260	82.55
36	Perorangan	719829	9144575	79.60	107	Pers. Tahu Mitra	709675	9152484	82.55
	Perorangan	719421		70.53	108	Pers. Tahu Terang	709267	9152397	82.55
	Perorangan		9144238	70.53	109	Vien Hotel Tartes	709675	9152484	82.55
39	PT. SANGHYANG SRI		9148472	39.21	110	Hotel Pasuruan	710034	9154533	82.55
	Perorangan		9146604	59.22	111	Hotel Pasuruan	710028	9154542	82.55
41	Gema ista raya Gema ista raya	705822	9148076 9148413	40.62 40.62	112 113	PDAM Pasuruan PDAM Pasuruan	708174 708095	9151390 9151336	82.55 82.55
43	Naga buana era indah		9148221	40.62	114	PDAM Pasuruan	708090	9151439	82.55
_	Perorangan		9148470	40.62	115	PDAM Pasuruan	707450	9150000	82.55
	PT BB PRO logistik		9148332	40.62	116	PT. Samsung	716600	9149550	82.55
46	PT. Nestle Indonesia	705503	9147695	40.62	117	cheil samsung indonesia	716527	9149055	9.89
	PT. Nestle Indonesia		9147521	40.62	118	cheil samsung indonesia	717141	9148974	9.89
48	PT. Nestle Indonesia		9147690	40.62	119	cheil samsung indonesia	717163	9149115	9.89
	PT. Nestle Indonesia		9147421	40.62	120	cheil samsung indonesia	716556	9149401	9.89
50	PT. YULI FeeD		9148332	40.62	121	cheil samsung indonesia	717141	9148779	9.89
	Tri era surya binamika DIRAJA SURYA FURNITURE		9148280 9130201	40.62 115.96	122 123	cheil samsung indonesia cheil samsung indonesia	716752 716470	9149036 9149253	9.89
53	catur mekar perkasa		9158426	56.81	123	cheil samsung indonesia	716855	9148918	9.89
	MAGNA I		9158093	56.81	125	Philip seafood indonesia	717299	9148885	9.89
55	PT. INDO FURNAMA (IFURA)		9158149	56.81	126	PT. PUTRA TEDJA SAMPOERNA	716796	9149055	9.89
56	PT. YANAMURI	704296	9157961	56.81	127	PT. PUTRA TEDJA SAMPOERNA	716796	9149055	9.89
57	Perorangan		9144522	4.60	128	PT. PUTRA TEDJA SAMPOERNA	716796	9149055	9.89
58	fajar terang		9156522	8.89	129	RM tengger	717520	9148624	9.89
	kayu indah indonesia		9156611	8.89	130	MUSHOLLA	714820	9151465	9.89
60	KOPERASI KARYA UTAMA		9156140	8.89	131	MUSHOLLA	714354	9151620	9.89
	MEBEL IN	_	9156522	8.89	132	PT. Sentra Boga Inti Selera	714820	9151244	9.89
62	PT. SRI REJEKI MEBELINDO SPBU 54.671.34		9156611 9156733	8.89 8.89	133 134	SPBU 54671.17.588 SPPBE	714872 714230	9151350 9151230	9.89 9.89
64	UD. TUNAS RIMBA		9155166	8.89	135	PT. BUKIT MUSTIKA PERSADA	714250	9147824	9.89
	PDAM Cab. Unit Nguling		9146884	74.85	136	UD Tirto agung	716007	9150040	9.89
66	SPBU 54.671.05		9146573	17.97	137	PT. Tirta Aji Pratama	714530	9147840	9.89
67	SPBU 54.671.28		9146586	17.97	138	Seni intan sejahtera	713444	9152092	9.89
68	SPBU 54.671.30	728360	9146055	17.97	139	Bukit mustika persaba	716097	9150026	9.89
69	SPBU 54.671.38		9146727	17.97	140	PT. Multi Breeder Adirama Indonesia Tbk	697500	9129750	149.69
	RM. LAKSANA JAYA NGULING		9146348	76.87	141	Bambang supeno	716864	9145224	149.69
71	MERAK JAYA	/08458	9143837	76.87	142	Yongky winarto	713642	9142635	149.69

Gambar 7 Distribusi constan head dan wall yang digunakan

Gambar 8 Distribusi Recharge di CAT Umbulan

Nilai *recharge* untuk peta di atas adalah sebagai berikut :

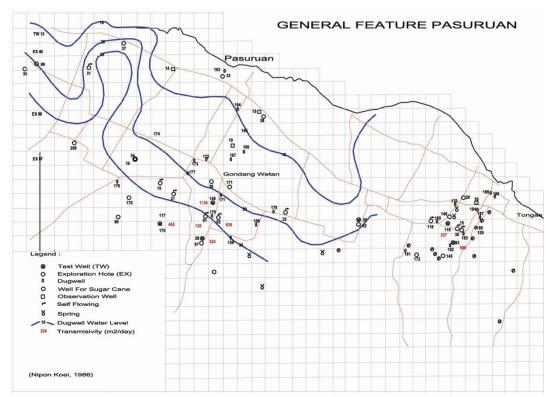
- A = 317.7 mm/tahun
- B = 655 mm/tahun
- $C = 633 \, \text{mm/tahun}$
- D = 568 mm/tahun
- E = 704 mm/tahun

3 Kalibrasi Model MODFLOW

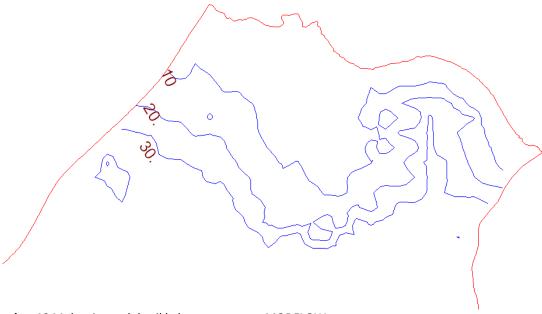
Kalibrasi model dilakukan untuk melihat perilaku hasil model dengan kenyataan di lapangan. Kalibrasi model yang digunakan adalah muka air yang terjadi pada tahun 1986 dengan pengambilan air melalui *pumping well* dan lainlain sebelum tahun 1986. Hasil muka air yang diperoleh disesuaikan dengan kenyataan di lapangan secara regional, dan bukan dilihat berdasarkan muka air yang terjadi pada suatu grid. Adapun muka air yang dihasilkan oleh Nipon Koei pada tahun 1986 sperti terlihat pada Gambar 9 di bawah ini. Sedangkan hasil keluaran dari program MODFLOW dapat dilihat pada Gambar 10.

4 Hasil Pemodelan MODFLOW

Setelah data berhasil diinputing dan telah dilakukan kalibrasi model secara regional dengan melihat pola muka air yang terjadi seperti yang dijelaskan bab sebelumnya, pada maka selanjutnya melakukan simulasi atau menjalankan program untuk melihat hasil prilaku kondisi air tanah dengan periode sampai pada tahun 2006. Berdasarkan hasil simulasi, maka dapat dilihat hasil keluaran model berupa elevasi muka air tanah yang terjadi serta surutan (drawdown) dan juga pergerakan besarnya kecepatan aliran air tanah baik besar maupun arah aliran yang terjadi. Nilai tersebut dapat dilihat pada setiap grid yang telah dilakukan pemodelan. Namun program **MODFLOW** memberikan informasi dari setiap gridnya seperti terlihat pada Gambar 11.


Selain dari pemodelan di atas juga dilakukan suatu pengembangan pengambilan air tanah yang tidak terkontrol dengan melakukan skenario pengambilan air tanah. Adapun skenario yang dibuat adalah sebagai berikut:

- Sekenario I: dilakukan penampahan pemompaan pada setiap grid mulai elevasi 25 m ke bawah dengan laju pemompaan sekitar 5 l/s.
- Sekenario II: dilakukan penambahan pemompaan pada setiap grid mulai elevasi 25 m ke bawah dengan laju pemompaan sekitar 10 l/s.
- Sekenario III: dilakukan penambahan pemompaan pada setiap grid mulai elevasi


- 25 m ke bawah dengan laju pemompaan sekitar 15 l/s.
- Sekenario IV: dilakukan penambahan pemompaan pada setiap grid mulai elevasi 25 m sampai elevasi 250 m dengan laju pemompaan sekitar 5 l/s.
- Sekenario V: dilakukan penambahan pemompaan pada setiap grid mulai elevasi 25 m sampai elevasi 250 m dengan laju pemompaan sekitar 10 l/s.
- Sekenario VI: dilakukan penambahan pemompaan pada setiap grid mulai elevasi 25 m sampai elevasi 250 m dengan laju pemompaan sekitar 15 l/s.

Berdasarkan batasan sekenario yang dibuat maka selanjutnya dapat dilakukan analisa dengan menggunakan MODFLOW sehingga diperoleh hasil dengan kondisi muka air tanah dan surutan dari setiap skenario yang dibuat. Adapun hasil dari semua skenario yang dibuat secara umum menunjukkan terjadinya pergerakan muka air tanah dari utara ke selatan. Namun perbedaan yang sangat jelas terjadi apabila skenario I sampai III dilakukan bila dibandingkan dengan skenario IV sampai dengan Skenario VI. Hal ini dapat dilihat dari hasil pemodelan berupa muka air tanah dengan skenario I sampai dengan skenario III seperti pada Gambar 12. Sedangkan untuk skenario IV sampai dengan skenario VI dapat dilihat pada Gambar 13. Berdasarkan Gambar tersebut maka dapat dilihat bahwa pergeseran muka air tanah tidak terlalu besar bila dibandingkan dengan Gambar 12.

Selain dari peta kontur muka air tanah yang terjadi dapat juga dilihat melalui surutan yang terjadi pada setiap grid untuk masing-masing skenario. Berdasarkan skenario I diperoleh hasil surutan dengan kriteria seperti diatas adalah sekitar 0 cm sampai dengan 74 cm dan dengan rata-rata surutan yang terjadi diseluruh grid yang aktif sekitar 22 cm. Sedangkan untuk skenario II diperoleh hasil sekitar 0 cm sampai dengan 126 cm dengan rata-rata surutan yang terjadi di seluruh grid yang aktif sekitar 41,5 cm. Sementara untuk skenario III diperoleh hasil surutan sekitar 0 cm sampai dengan 170 cm dengan rata-rata surutan yang terjadi di seluruh grid yang aktif sekitar 59,5 cm. Berbeda halnya yang terjadi dengan skenario IV sampai dengan skenario VI. Berdasarkan hasil skenario IV diperoleh hasil surutan sekitar 0 cm sampai dengan 22 cm dengan rata-rata surutan yang terjadi di seluruh grid yang aktif sekitar 7,8 cm. Sedangkan skenario V diperoleh hasil surutan sekitar 0 cm sampai dengan 41 cm dengan ratarata surutan yang terjadi di seluruh grid yang aktif sekitar 15,2 cm.

Gambar 9 Muka air tanah yang diperoleh dari hasil intepretasi Nipon Koei

Gambar 10 Muka air tanah hasil keluaran program MODFLOW

Sementara untuk skenario VI diperoleh hasil surutan sekitar 0 cm sampai dengan 57 cm dengan rata-rata surutan yang terjadi di seluruh grid yang aktif sekitar 22,1 cm. Berdasarkan hasil tersebut terlihat jelas bahwa untuk skenario I sampai dengan skenario III memiliki surutan yang lebih besar bila dibandingkan dengan skenario IV sampai dengan skenario IV. Dengan hasil yang diperoleh tersebut maka dapat

dinyatakan bahwa pengambilan air tanah yang tidak terkontrol dilakukan pada daerah hilir dari mata air umbulan akan menyebabkan surutan muka air tanah yang lebih besar terjadi di daerah perkotaan (hilir) apabila dibandingkan dengan pengambilan air tanah yang tidak terkontrol pengambilannya dilakukan di hulu dari mata air umbulan.

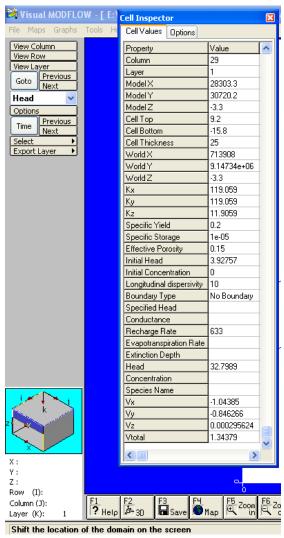
KESIMPULAN

Dari hasil pemodelan yang dilakukan maka dapat diberikan kesimpulan bahwa pengambilan air tanah yang tidak terkontrol yang dilakukan pemodelan menunjukkan terjadinya perubahan muka air tanah serta terjadinya surutan pada CAT Umbulan, perubahan muka air terjadi dengan meningkatnya pengambilan air tanah mulai dari utara menuju selatan, perubahan kontur muka air tanah yang lebih besar terjadi pada skenario I sampai dengan skenario III dibandingkan dengan skenario IV sampai dengan skenario VI, dan surutan muka air tanah yang terjadi berkisar antara 0 cm sampai dengan 170 cm dengan rata - rata 59,5 cm yang terjadi pada skenario III.

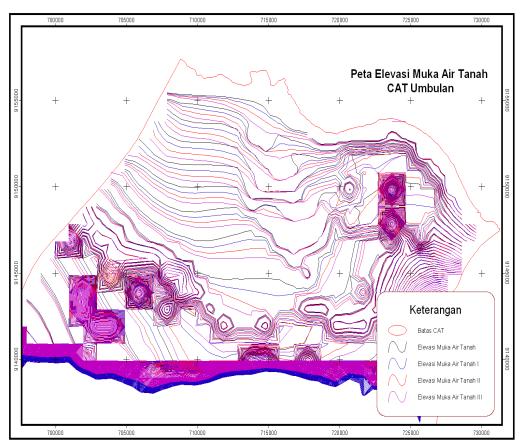
DAFTAR PUSTAKA

Elkrail, Adil Balla and Abdalla E. Ibrahim. 2008. Regional groundwater flow modeling of Gash River Basin, Sudan. Journal of Applied Sciences in Environmental Sanitation, 3 (3): 157-167.

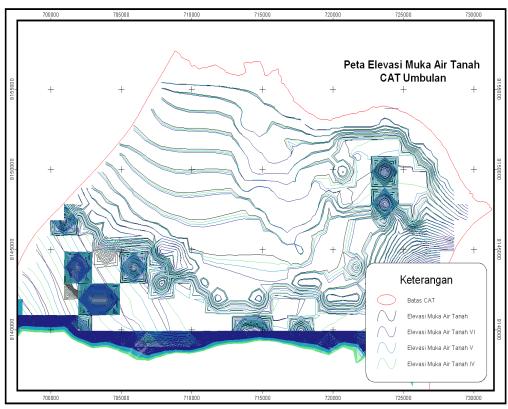
Harbaugh, Arlen W., Edward R. Banta, Mary C. Hill, and Michael G. McDonald. 2000. MODFLOW-2000, The U.S. Geological Survey Modular Ground –Water Model: User Guide to Modularization Concepts and The Ground Water Flow Process. United State: U.S. Geological Survey.


He, B., Keiji Takase, and Yi Wang. 2008. A Semi-distributed groudwater recharge modeling for estimating water-table and water balance variables. *Hydrogeology Journal* 16:1215-1228.

Herrmann, F., Christoph Jahnke, Florian Jenn, Ralf Kunkel, Hans-Jürgen Voigt, Jens Voigt, and Frank Wendland. 2009. Groundwater recharge rates for regional groundwater modelling: a case study using GROWA in the Lower Rhine lignite mining area, Germany. Hydrogeology Journal Vol. 17, Iss. 8; pg. 2049.


Illman, Walter A., Junfeng Zhu, Andrew J. Craig, and Danting Yin. 2010. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study. Journal of Geophysical Research, vol. 46.

Rojanschi, V., J. Wolf, and R. Barthel. 2006. Storage cascade vs. MODFLOW for the modelling of groundwater flow in the context of the calibration of a hydrological model in the Ammer catchment. Advanced in Geosciences, 9, 101–108.


Straface, S., Enzo Rizzo, *and* Francesco Chidichimo. 2010. Estimation of hydraulic conductivity and water table map in a large-scale laboratory model by means of the self-potential method. *Journal of Geophysical Research*, vol. 115.

Gambar 11 Tampilan hasil keluaran dari MODFLOW untuk satu *grid cell*.

Gambar 12 Elevasi muka air tanah dengan skenario 1 sampai 3

Gambar 13 Elevasi muka air tanah dengan skenario 4 sampai 5