

MODEL HIPOTETIKAL KESETIMBANGAN SEDIMEN SEBAGAI INDIKATOR AWAL ADANYA PENURUNAN MUKA TANAH DI PANTAI UTARA PULAU JAWA

HYPOTHETICAL MODEL OF SEDIMENT BUDGET AS INITIAL INDICATOR OF LAND SUBSIDENCES IN NORTH COAST JAVA ISLAND

Cahyo Nur R. Nugroho 1)* Suprapto 1) Adi Prasetyo 1) Leo Eliasta Sembiring 1)

¹⁾Balai Litbang Pantai Jl. Gilimanuk - Singaraja Km 122, Desa Musi, Kec. Gerokgak, Kab. Buleleng, Bali, Indonesia

*Coresponden author: cahyonur.rn@gmail.com

Diterima: 22 Maret 2019; Direvisi: 21 Februari 2019; Disetujui: 4 April 2019

ABSTRACT

North Coast of Java Island continues to experience coastal dynamics which resulted significant coastline erosion problems. According to the Ministry of Marine and Fisheries data (KKP), from 100 locations of coastline erosion in 17 provinces of Indonesia, North Coast of Java Island suffered the worst erosion, reaching 745 km or 44 percent of total coastline length. The shoreline retreat can be caused by three factors: sea level rise, erosion and land subsidence. The aim of this research was to determine the correlation between sediment equilibrium in coastal cells and the initial hypothesis of land subsidence which caused a coastline retreat. The method to calculate sediment equilibrium uses hypothetical sediment budget model. Modeling itself is done along the North Coast of Java. LITDRIFT model of Longshore Sediment Drift is employed to assess the coastline profile. The result of the research shows that there is anomalous model that is the condition of sediment is surplus but the condition of the field is backward. Several locations experienced a sediment surplus but experienced a coastline retreat, and after comparison with field observations and secondary data there was evidence of land subsidence: Pondok Bali Beach, Randusongo Beach, Muara Reja Beach, Depok Beach, Slamaran Beach, Jeruksari-Mulyorejo Beach and Sriwulan Beach. This models result can be used as an initial indicator of the land subsidence causing the coastline to retreat. In order to solve the erosion and sedimentation problem, the detail study with more comprehensive parameter needs to be conducted.

Keywords: Sediment budget, erosion, land subsidence, north coast java

ABSTRAK

Pantai utara Pulau Jawa terus mengalami dinamika pesisir yang mengakibatkan mundurnya garis pantai secara signifikan. Berdasarkan data Kementerian Kelautan dan Perikanan (KKP), dari 100 lokasi pantai yang tergerus di 17 provinsi, pantai utara Pulau Jawa mengalami erosi terparah, mencapai 745 km atau 44 persen total panjang garis pantainya. Kemunduran garis pantai dapat disebabkan oleh 3 faktor yaitu kenaikan muka air laut, erosi dan penurunan tanah. Penelitian bertujuan untuk mengetahui korelasi antara kesetimbangan sedimen pada sel pantai terhadap hipotesa awal adanya penurunan tanah yang menyebabkan kemunduran garis pantai. Metode perhitungan kesetimbangan sedimen menggunakan model hipotetikal kesetimbangan sedimen. Pemodelan dilakukan di sepanjang pantai utara Pulau Jawa. Metode yang digunakan dalam penelitian ini yaitu dengan pemodelan hipotetikal kesetimbangan sedimen menggunakan LITDRIFT model Longshore Sediment Drift. Hasil pemodelan menunjukkan bahwa terdapat anomali yaitu kondisi sedimen bernilai surplus namun kondisi dilapangan garis pantainya mengalami mundur. Beberapa lokasi yang mengalami surplus sedimen namun mengalami kemunduran garis pantai, dan setelah dibandingkan dengan pengamatan lapangan dan data sekunder terdapat bukti penurunan tanah yaitu Pantai Pondok Bali, Pantai Randusongo, Pantai Muara Reja, Pantai Depok, Pantai Slamaran, Pantai Jeruksari-Mulyorejo dan Pantai Sriwulan. Hasil pemodelan ini dapat digunakan sebagai indikator awal adanya penurunan tanah yang menyebabkan garis pantai mundur. Dalam penanganan erosi sedimentasi, studi detail perlu dilakukan secara lebih komprehensif.

Kata Kunci: Kesetimbangan sedimen, erosi, penurunan tanah, pantai utara Pulau Jawa

PENDAHULUAN

Pantai utara Pulau Iawa mengalami kemunduran garis pantai yang besarnya cukup signifikan. Menurut data Kementerian Kelautan dan Perikanan (KKP), dari 100 lokasi panta yang tergerus di 17 provinsi di Indonesia, pantai utara Pulau Jawa mengalami erosi terparah, mencapai 745 km atau 44 persen total panjang garis pantainya. Total luasan area yang hilang karena erosi di Jawa setara 10.988 hektar. Menurut Direktur Perencanaan Ruang Laut KKP, beberapa kawasan wisata pesisir di Pulau Jawa telah hilang. Contohnya, Pantai Tirtamaya di Indramayu, Jawa Barat, yang rusak digerus ombak. Melihat kecenderungan seperti itu, kota-kota di pesisir Pulau Jawa, seperti Kota Pekalongan, dalam 100 tahun mendatang akan tergenang air laut hingga 2,1 km dari garis pantai sekarang. Kota Semarang akan tergenang 3,2 km dari pantai (Diposaptono, Budiman, & Agung, 2013).

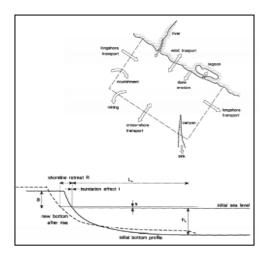
Kemunduran garis pantai dapat disebabkan oleh 3 faktor yaitu kenaikan muka air laut, erosi dan penurunan tanah (López dkk., 2017). Garis pantai yang mengalami erosi dikarenakan daya tahan material penyusun pantai lebih kecil daripada energi gelombang yang mencapai garis pantai, sedangkan adanya penurunan tanah menyebabkan garis pantai perlahan lahan tenggelam seolah mengalami kemunduran.

Perbedaan penyebab kemunduran garis pantai dapat diketahui dengan mengkaji dinamika sedimen yang terdapat dalam satu sel pantai. Erosi atau sedimentasi terjadi ketika dalam satu pantai tidak ada kesetimbangan antara pasokan dan kapasitas angkutan sedimen. Sedangkan tanah bukan disebabkan penurunan dinamika sedimen, namun lebih pada kondisi geologi pantai. Sehingga dengan mengkaji dinamika sedimen dalam satu sel pantai dapat digunakan sebagai indikator awal adanya kemunduran garis pantai yang disebabkan oleh erosi atau faktor lain seperti penurunan tanah.

Tujuan dari penelitian ini adalah mengetahui korelasi antara kesetimbangan sedimen pada sel pantai terhadap hipotesa awal adanya penurunan tanah yang menyebabkan kemunduran garis pantai.

Mundurnya Garis Pantai

Mundurnya garis pantai adalah proses perubahan garis pantai yang cenderung berpindah mengarah ke darat. Secara garis besar kemunduran garis pantai disebabkan oleh (Eric Bird dan Lewis, 2015):


- 1 Penurunan pasokan sedimen dari sungai, tebing ataupun lantai dasar laut.
- 2 Peningkatan energi gelombang akibat kejadian badai
- 3 Perubahan sudut datang gelombang
- 4 Gangguan angkutan sedimen sejajar pantai oleh struktur pantai tegak lurus
- 5 Kenaikan muka air laut

Sel Pantai dan Kesetimbangan Sedimen

Pendekatan sel pantai merupakan salah satu pendekatan dengan mengenali karakteristik pantai sebagai satu kesatuan sedimen. Sel pantai adalah satuan panjang pantai yang mempunyai keseragaman kondisi fisik dengan karakteristik dinamika sedimen dalam wilayah pergerakannya tidak mengganggu keseimbangan kondisi pantai yang berdekatan (Van Rijn, 2011). Sel pantai dapat memberi informasi tentang kondisi pantai berdasarkan keseragaman yang dimanfaatkan bagi perencanaan pemanfaatan ruang pesisir. Pemahaman tentang sel pantai sebagai dasar pengelolaan pesisir merupakan suatu keharusan karena setiap segmen garis pantai merupakan satuan subsistem dalam keseragaman. Pendekatan sel pantai dalam pengelolaan ruang pesisir memberi dampak positif dalam pemanfaatan sumberdaya wilayah pesisir (Nicholls dkk., 2012).

Salah satu proses yang terjadi di pantai dan sangat perlu diperhatikan adalah transpor sedimen menyusur pantai (longshore sediment transport). Proses transpor sedimen menyusur pantai dapat mengakibatkan perubahan garis pantai seperti erosi yang berdampak pada mundurnya garis pantai (abrasi), menyebabkan pendangkalan yang berakibat pada majunya garis pantai (akresi) yang akhirnya mengurangi fungsi pantai atau bangunan pantai (Van Lancker dkk., 2004). Hal ini sangat berkaitan dengan kesetimbangan sedimen. Proses transpor sedimen dijelaskan pada Gambar 1.

Kesetimbangan sedimen adalah keseimbangan volume transpor sedimen dalam suatu penggal pantai berdasarkan jumlah transpor sedimen, erosi dan deposisi. Prinsip keseimbangan dalam kesetimbangan sedimen sempurna akan memberikan hasil nilai sedimen yang masuk sama besar dengan nilai sedimen yang keluar. Apabila nilai sedimen yang masuk lebih besar dari nilai sedimen yang keluar maka akan memberi nilai sedimen yang berarti terjadi pengendapan dan sebaliknya (Rosati dan Kraus, 1999).

Sumber: Van Rijn, 2013

Gambar 1 Kesetimbangan sedimen pantai dan dampak kenaikan muka air laut

Pemodelan Kesetimbangan Sedimen

Kesetimbangan sedimen merupakan analisis volume sedimen yang masuk dan sedimen yang keluar dalam satu sel pantai (Rosati, 2005). Studi ini dapat menjadi indikator garis pantai mengalami erosi atau sedimentasi. Perhitungan kesetimbangan sedimen dilakukan melalui pemodelan. Pengangkutan sedimen di daerah pantai erat dipengaruhi oleh adanya arus. Arus pantai ini ditentukan terutama oleh besarnya sudut yang terbentuk antara gelombang yang datang dengan garis pantai. Jika gelombang datang membentuk sudut miring, maka terbentuk arus menyusur pantai (longshore current) yaitu arus yang bergerak sejajar dengan garis pantai akibat perbedaan tekanan hidrostatik (Pethick, 1984).

Perhitungan dan analisis transpor sedimen sepanjang pantai menggunakan rumus empiris yang didasarkan pada kondisi gelombang di daerah yang ditinjau. Rumus empiris ini merupakan hubungan sederhana antara transpor sedimen dengan komponen fluks energy gelombang sepanjang pantai dalam bentuk persamaan:

$$P_1 = \frac{\rho \,\mathrm{g}}{8} H_b^2 C_b \sin \alpha_b \cos \alpha_b$$

CERC (1984) memberikan hubungan untuk Qs dengan satuan m³/tahun yaitu:

Untuk Qs dengan satuan m^3 /hari sebagai berikut: Qs = 3,534 P1(3)

Keterangan:

Qs: angkutan sedimen sepanjang pantai (m^3 /hari)

P1 : komponen fluks energi gelombang sepanjang pantai pada saat pecah (Nm/d/m)

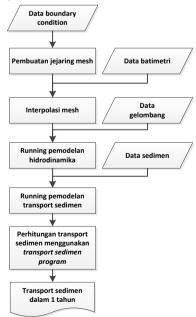
ρ : rapat massa air laut (kg/m³) g : percepatan gravitasi bumi (m/s²)

Hb : tinggi gelombang pecah (m)

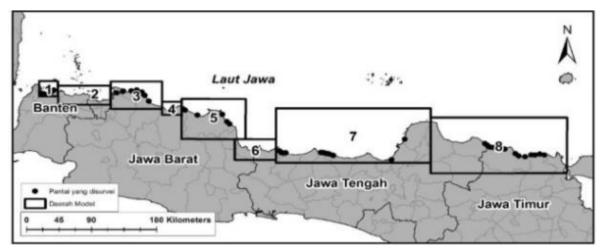
Cb : cepat rambat gelombang pecah (m/d):

α_b : sudut datang gelombang pecah

K,n: konstanta (dimensionless) lihat Tabel 1.


Tabel 1 Beberapa rumus empiris transpor sedimen sepanjang pantai

No	Nama	Rumus Empiris
1	Caldwell	Q _s =1,200 P _I ^{0.8}
2	Savage	Q _s =0,219 P _I
3	Ijima, Sato, Aono, Ishi	Q _s =0,130 P _I ^{0.54}
4	Ichikawa, Achiai, Yomita, Murobuse	Q_s =0,130 P_I ^{0.8}
5	Ijima, Sato	Qs=0,060 Pi
6	Tanaka	$Q_s = 0.120 P_I$
7	Komar, Inman	Q _s =0,778 P _I
8	Das	$Q_s = 0.325 P_I$
9	CERC	Q _s =0,401 P _I


Sumber: (Triatmodjo, 1999)

METODOLOGI

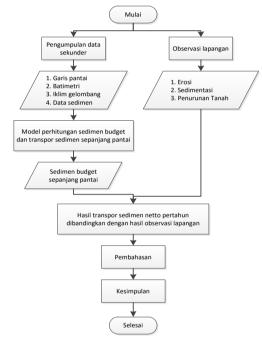
Pemodelan kesetimbangan sedimen dilakukan menggunakan LITDRIFT. LITDRIFT adalah model numerik yang merupakan bagian dari perangkat LITPACK yang dibangun oleh DHI Water and Environment. LITDRIFT terdiri dari dua bagian utama, yaitu model hidrodinamika dan model transpor sedimen (DHI, 2012). Pada kasus ini dipilih model Longshore Sediment Drift. Asumsi yang digunakan dalam model adalah kondisi yang seragam di sepanjang pantai yang lurus. Fenomena yang dipertimbangkan adalah depthrefraction, breaking, shoaling, dan directional spreading.

Gambar 2 Alur pemodelan transpor sedimen

Gambar 3 Daerah Kajian Model Kesetimbangan Sedimen

Daerah yang dimodelkan adalah seluruh Pantai utara Pulau Jawa, dimana dalam analisis lokasi kajian dibagi menjadi 8 bagian (Gambar 3). Setelah ditentukan lokasi yang akan dikaji, kemudian ditentukan segmen-segmen pantai yang akan dimodelkan. Penentuan segmen-segmen pantai ini dibuat berdasarkan lokasi-lokasi kajian yang dikunjungi langsung di lapangan serta morfologi pantai.

Data utama yang digunakan untuk memodelkan transport sedimen dalam penentuan *coastal cell* adalah data batimetri, gelombang, dan sedimen. Input parameter model disajikan pada Tabel 2.

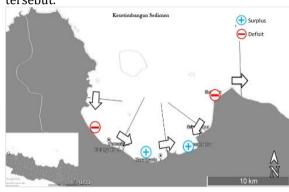

Tabel 2 Data input parameter model

No	Parameter	Sumber			
1	Boundary	Garis pantai utara Pulau Jawa Peta RBI			
	condition	2016			
2	Batimetri	GEBCO resolusi 30"			
3	Gelombang	Model Wave Watch III (Wicaksana, Sofian, & Pranowo, 2015)			
4	Sedimen	Data sedimen Pantai Batang (Hendriyono, Wibowo, Hakim, dan Istiyanto, 2015)			

Secara lebih terinci, metode penelitian disajikan secara skematik pada Gambar 4.

HASIL DAN PEMBAHASAN

Neto transpor sedimen merupakan jumlah dari sedimen yang ditranspor selama satu tahun. Netto transpor sedimen ini didapatkan dari penjumlahan transpor sedimen di musim barat dan timur. Hasil pemodelan yang dilakukan bersifat hipotetikal yaitu pemodelan hanya melihat dominasi/tendensi nilai sedimen yang ada dalam satu sel pantai defisit atau surplus. Defisit sedimen disimbolkan dengan tanda minus (-), sedangkan surplus sedimen disimbolkan dengan tanda plus (+).


Gambar 4 Metode penelitian pemodelan hipotetikal kesetimbangan sedimen

Selain itu pembahasan ditekankan pada beberapa lokasi yang telah dilakukan pengukuran lapangan, yaitu pada lokasi 1, 3, 5, 7 dan 8. Hasil model ini kemudian di bandingkan dengan data citra untuk melihat validitas dari hasil model.

Lokasi 1 (Banten)

Hasil pemodelan transpor sedimen sepanjang Pantai di Teluk Banten ditunjukkan pada Gambar 5. Hasil pemodelan di sekitar teluk Banten menunjukkan bahwa arah transport sedimen di perairan ini mengarah ke kanan kecuali transpor di sekitar Pantai Sawah Luhur. Transpor sedimen di sekitar Sawah Luhur mengarah ke barat daya. Akibat perbedaan arah tersebut, terlihat adanya pertemuan transpor sedimen di daerah Pantai Sawah luhur.

Hasil pemodelan transpor sedimen di teluk Banten ini kemudian dibandingkan dengan data citra di daerah tersebut seperti yang disajikan pada Gambar 6. Data citra ini menunjukkan bahwa Teluk Banten merupakan perairan yang keruh. Hal ini kemungkinan terjadi karena besarnya aliran sedimen. Di daerah pertemuan aliran sedimen, terlihat bahwa daerah tersebut lebih keruh dan sebaran sedimennya lebih lebar dibandingkan dengan tempat yang lain. Hal ini kemungkinan karena aliran sedimen yang bertemu di daerah tersebut.

Gambar 5 Hasil pemodelan transpor sedimen Netto di Teluk Banten

Lokasi Teluk Banten merupakan teluk yang terlindung dari gelombang karena ada beberapa pulau di depan teluk. Teluk Banten ini juga merupakan teluk dengan batimetri yang dangkal, sehingga gelombang yang masuk ke dalam teluk telah mengalami beberapa transformasi akibat refraksi dan difraksi. Data batimetri yang kurang detail dan data input gelombang yang berada cukup jauh dari teluk menyebabkan model pada lokasi ini mempunyai hasil yang kurang baik. Hal ini terlihat pada ujung timur teluk Banten terihat sangat keruh namun pada model terlihat aliran sedimen yang berpencar disana. Hal ini disebabkan adanya muara sungai di daerah tersebut yang tidak dimasukkan perhitungan model.

Gambar 6 Data citra di teluk Banten

Lokasi 3 (Karawang)

Secara umum, aliran sedimen di Pantai Karawang ini mengarah ke timur, kecuali pada lokasi yang ditunjukkan dengan kotak merah pada Gambar 7. Ketika aliran sedimen ini bertemu, sedimen akan terbawa kearah laut. Hal ini mengakibatkan daerah tersebut menjadi lebih keruh dengan sebaran sedimen yang lebih luas. Hasil citra pada gambar 8 juga menunjukkan bahwa sedimen di lokasi tersebut terlihat lebih luas dibandingkan yang lain disekitarnya.

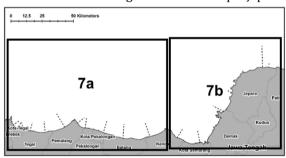
Gambar 7 Hasil pemodelan Sedimen Transport di Pantai Karawang


Bentuk morfologi pantai di Karawang tidak terlalu kompleks. Batimetri di daerah ini juga cenderung homogen. Hal tersebut menyebabkan pemodelan dapat dilakukan dengan lebih sederhana. Meskipun menggunakan data input batimetri dan gelombang yang tidak terlalu detail, model dapat menunjukkan dinamika sedimen yang terdapat di garis Pantai Karawang cukup baik.

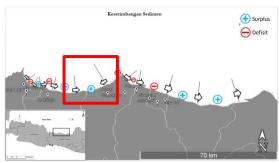
Gambar 8 Data citra di Pantai Karawang

Lokasi 5 (Indramayu)

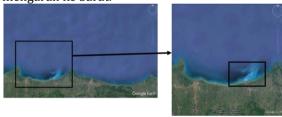
Kesetimbangan sedimen di daerah Indramayu menunjukkan aliran yang berbeda-beda (Gambar 9). Di beberapa tempat mengarah ke timur dan di beberapa tempat mengarah ke barat yang disebabkan karena morfologi pantai yang berkelok-kelok. Di bagian timur, transpor sedimen dari barat dan timur bertemu di sekitar Pantai Tirtamaya. Di sebelah barat juga terdapat pertemuan aliran sedimen ditunjukkan pada kotak merah. Hasil citra menunjukkan adanya pengaruh akibat pertemuan aliran transpor sedimen di bagian barat Pantai Indramayu yang terlihat lebih keruh (Gambar 10).


Gambar 9 Hasil pemodelan transpor Netto di Pantai Indramayu

Gambar 10 Data citra di Pantai Indramayu

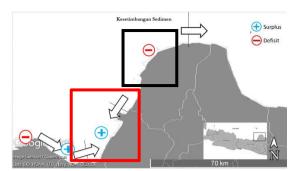

Lokasi 7 (Jawa Tengah)

Lokasi 7 yang ditunjukkan pada Gambar 10 merupakan pantai di Jawa Tengah yang memanjang dari Brebes sampai Jepara. Karena pesisir pantainya sangat panjang, dalam menampilkan hasil, lokasi 7 dibagi menjadi 2 lokasi yaitu lokasi 7a dan lokasi 7b. Lokasi 7a membentang dari Brebes sampai Kendal, dan lokasi 7b membentang dari Kendal sampai Jepara.


Gambar 11 Pembagian segmen análisis lokasi 7

Profil pantai lokasi 7a (Gambar 11) menunjukkan adanya dua teluk besar. Teluk yang pertama memanjang dari Brebes sampai Pemalang dan Teluk yang kedua membentang dari Pemalang sampai Kendal. Secara umum netto aliran transpor sedimen di lokasi 7a ini mengarah ke Timur, kecuali di Pemalang yang mengarah ke Barat. Akibatnya, ada pertemuan aliran sedimen yang di Barat dan Timur yang ditunjukkan oleh kotak merah pada Gambar 12.

Gambar 12 Hasil pemodelan transpor Netto lokasi 7a.

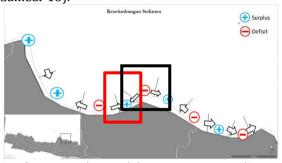

Apabila dilihat pada data citra di daerah pertemuan aliran sedimen (Gambar 13), pada daerah tersebut terdapat muara sungai sehingga debit sedimennya tinggi, namun akibat pertemuan aliran sedimen dari barat dan timur, sebaran sedimen terlihat memanjang ke lepas pantai dan sedikit mengarah ke timur. Hal ini dikarenakan saat aliran sedimen bertemu, sedimen kemudian tertranspor menjauhi pantai. Sebaran ke timur ini dikarenakan debit sedimen yang mengarah ke timur jauh lebih besar dibanding sedimen yang mengarah ke barat.

Gambar 13 Data Citra pada Lokasi 7a

Lokasi 7b membentang dari Pantai Kendal hingga Jepara. Lokasi ini dibagi kedalam 4 segmen model. Netto transpor pantai utara Jepara menunjukkan aliran sedimen ke timur. Sedangkan untuk pantai di sebelah barat Jepara, menunjukan arah transpor ke selatan. Transpor yang mengarah ke selatan ini bertemu dengan traspor dari barat yang mengarah ke timur.

Kotak hitam pada Gambar 14 dan Gambar 15 merupakan daerah dimana arah transpor mempunyai arah yang berlawanan. Dari hasil data citra, dapat dilihat bahwa daerah divergensi tersebut mempunyai luasan sebaran sedimen yang kecil. Hal ini dikarenakan sedimen di daerah tersebut di transpor ke timur dan keselatan, sehingga daerah tersebut cenderung jernih. Daerah kotak merah merupakan daerah pertemuan antar transpor dari barat dan dari utara. Akibat dari pertemuan tersebut, pantai di daerah tersebut cenderung lebih keruh jika dibandingkan pada daerah di lokasi kotak hitam.

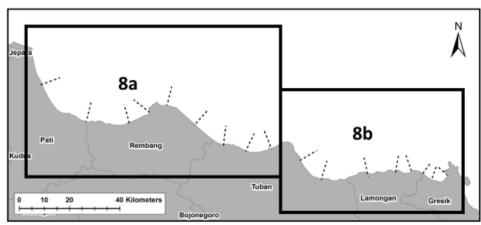
Gambar 14 Hasil pemodelan transpor Netto lokasi 7b



Gambar 15 Data Citra pada Lokasi 7b

Lokasi 8 (Pati-Gresik)

Sama seperti pada lokasi 7, hasil pemodelan transpor sedimen di lokasi 8 ditunjukkan dalam 2 lokasi, yaitu lokasi 8a dan lokasi 8b. Lokasi 8a membentang dari pantai Pati hingga Tuban. Sedangkan lokasi 8b memanjang dari Tuban sampai Gresik (Gambar 16).

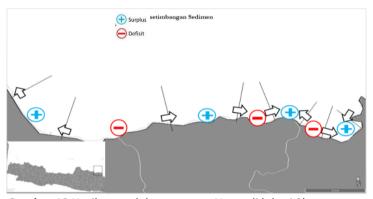

Transpor netto di lokai 8a ditunjukkan oleh Gambar 17. Di sepanjang pantai Pati-Tuban, netto transpor sedimen saling bertemu di beberapa tempat. Hasil citra menunjukkan bahwa di daerahdaerah pertemuan aliran sedimen terlihat lebih keruh yaitu di Pantai Kertomulyo, Pantai Pangkalan, Pantai Caruban dan Pantai Balongan, sedangkan di lokasi-lokasi tempat terjadinya divergensi aliran, terlihat lebih jernih yaitu di Pantai Dampo Awang, Pantai Sluke dan Pantai Perbatasan. Lokasi tempat bertemunya aliran ditunjukkan oleh kotak-kotak merah, sedangkan lokasi-lokasi terjadinya divergensi aliran ditunjukkan oleh kotak hitam (Gambar 17 dan Gambar 18).

Gambar 17 Hasil pemodelan transpor Netto di lokasi 8a

Gambar 18 Data Citra pada Lokasi 8a

Gambar 16 Lokasi 8 yang dibagi menjadi dua lokasi 8a dan 8b.

Tabel 3 Rekapitulasi hasil pemodelan kesetimbangan sedimen dan hasil identifikasi dilapangan


		Permasalahan Pantai							Analisis
No	Nama Pantai	Erosi	osi Laju Erosi <i>Sediment</i> Penurunan laju R		ROB	OB Sedimen kesetimb angan			
A Provinsi Banten									
1	Pantai Pamarican	٧	±	3-5m/thn	-	-	-	-	Defisit
2	Pantai Karangantu	٧		-	٧	-	-	-	Defisit
3	Pantai Sawah Luhur	٧		-	-	-	-	-	Surplus
4	Pantai Susukan	٧	±	50m/3 thn ini	-	٧	-	-	Defisit
5	Pantai Tanjung Pasir	٧	±	10m/thn	-	-	-	-	Defisit
В	Provinsi Jawa Barat		•		.		•		
1	Pantai Cisedari	٧		-	-	-	-	-	Defisit
2	Pantai Dobolan	-		-	٧	-	-	-	Surplus
3	Pantai Cilebar	٧	±	35 m (2004)	-	-	-	-	Defisit
4	Pantai Pondok Bali	٧	±	200m (2008)	-	٧	-	٧	Surplus
5	Pantai Patimban	٧		-	-	-	-	-	Surplus
6	Pantai Tirtamaya	٧	±	150m (1991)	-	-	-	-	Surplus
7	Pantai Karangsong	-		-	٧	-		-	Defisit
С	Provinsi Jawa Tengah								
1	Pantai Randusanga	٧		-	-	٧		٧	Surplus
2	Pantai Muarareja	٧		-	-	٧	-	٧	Surplus
3	Pantai Martoloyo	1	±	-	V	-	-	-	Surplus
4	Pantai Depok	٧	±	63m (2003- 2017)	-	٧	7,7-10 cm/thn (InSAR)	٧	Surplus
5	Pantai Wonokerto-Api api	V			-	V	7,7-10 cm/thn (InSAR)	v	Defisit
6	Pantai Jeruksari- Mulyorejo	٧	±	33m (2006- 2017)	-	٧	7,7-10 cm/thn (InSAR)	٧	Surplus
7	Pantai Pekalongan	V	±	15m (2009- 2017)	-	V	7,7-10 cm/thn (InSAR)	v	Defisit
8	Pantai Slamaran	٧		-	-	٧	7,7-10 cm/thn (InSAR)	v	Surplus
9	Pantai Sigandu	٧		-	-	-	-	-	Surplus
10	Pantai Sendang Sikucing	٧		-	-	-	-	-	Defisit
11	Pantai Ngebum	٧		-	V	-	-	-	Surplus
12	Pantai Sriwulan	٧		-	-	٧	6 cm/thn	٧	Surplus
13	Pantai Semat dan Ganggul Tlare	V			-			-	Defisit
D	Provinsi Jawa Timur		ı	15 (2000		T	I	ı	ı
1	Pantai Sukolilo	٧	±	15m (2009- 2017)	-	-	-	_	Defisit
2	Pantai Bulujowo	٧		-	-	-	-	-	Defisit
3	Pantai Boncong	-		-	٧	-	-	-	Surplus
4	Pantai Gadon	٧		-	٧	-	-	-	Defisit
5	Pantai Sugihwaras	٧		-	-	-	-	-	Defisit
7	Pantai Ngimboh	٧		-	-	-	-	-	Defisit
8	Pantai Kramat/Pantai Mengare	V		9-25m (2009- 2017)	-	-	-	-	Defisit

Tabel 4 Hasil pemodelan kesetimbangan sedimen yang mempunyai anomali dengan kenampakan dilapangan

No	Lokasi	Hasil Pemodelan Kesetimbangan Sedimen	Hasil Observasi	Keterangan	Foto Kenampakan	Data Pendukung			
Anomali defisit sedimen garis pantai maju									
1	Pantai Karangantu	Defisit sedimen	Garis pantai maju	Adanya pembangunan jetty di muara sungai		·			
2	Pantai Karangsong	Defisit sedimen	Garis pantai maju	Adanya pembangunan jetty di muara sungai	Kennitori	-			
3	Pantai Gadon	Defisit sedimen	Garis pantai maju	Adanya pembangunan sabuk pantai di depan garis pantai	N KELAUTAN DAN PERIKANAN REPUBLIK INDI BEKERJA SAMA DENGAN LAUTAN DAN PERIKANAN KABUPATEN T SABUK PANTAI KARING GEOTEKSTIK HERBANANG INGEN APEN TANUN 2016 DINAT SIGNITYTHUREN TERHAN TELAH DIPASANG SAE UNIA PARTA DAN PERIKANAN ARISK PARTA DAN ANCAMAN ER MAN REGUNAN YANG BAST HERBAN SABUK PANTAI DAN ANCAMAN ER MAN REGUNAN YANG BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR BARAC DAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN SABUK PANTAI SEPERTI: JABI KAR DAN TANUN BAST HERBAN BAST BAST BAST BAST PANTAI SEPERTI: JABI KAR DAN TANUN BAST BAST BAST BAST BAST BAST BAST BAST	-			
Ano	Anomali surplus sedimen garis pantai mundur								
1	Pantai Sawah luhur	Surplus sedimen	Garis pantai mundur	Kenampakan dilapangan terdapat banyak sedimen, namun konversi lahan mangrove menjadi tambak mengakibatkan erosi					
2	Pantai Pondok Bali	Surplus sedimen	Garis pantai mundur	Penurunan tanah		Tidak ada data			

No	Lokasi	Hasil Pemodelan Kesetimbangan Sedimen	Hasil Observasi	Keterangan	Foto Kenampakan	Data Pendukung
3	Pantai Randusongo	Surplus sedimen	Garis pantai mundur	Penurunan tanah		Tidak ada data
4	Pantai Muarareja	Surplus sedimen	Garis pantai mundur	Penurunan tanah		Tidak ada data
5	Pantai Depok	Surplus sedimen	Garis pantai mundur	Penurunan tanah		7,7-10 cm/thn (InSAR)
6	Pantai Slamaran	Surplus sedimen	Garis pantai mundur	Penurunan tanah		7,7-10 cm/thn (InSAR)
7	Pantai Jeruksari Mulyorejo	Surplus sedimen	Garis pantai mundur	Penurunan tanah		7,7-10 cm/thn (InSAR)

No	Lokasi	Hasil Pemodelan Kesetimbangan Sedimen	Hasil Observasi	Keterangan	Foto Kenampakan	Data Pendukung
8	Pantai Sriwulan	Surplus sedimen	Garis pantai mundur	Penurunan tanah		6 cm/thn
9	Pantai Sigandu	Surplus sedimen	Garis pantai mundur	Adanya pembangunan pelabuhan sehingga mengganggu transport sedimen, mengakibatkan downdrift (Pantai Sigandu) mengalami erosi		-

Gambar 19 Hasil pemodelan transpor Netto di lokasi 8b

Gambar 20 Data Citra pada Lokasi 8b

Lokasi 8b membentang dari Pantai Gresik hingga Tuban. Morfologi pantai yang berliku-liku, membuat pemodelan yang dilakukan harus mengalami penyesuaian, diantaranya simplifikasi bentuk pantai, Hasil pemodelan menunjukkan bahwa sebagian area sebelah barat (Daerah Tuban) aliran sedimen ke barat laut. Sedangkan di daerah Lamongan, sedimen mengarah ke timur.

Untuk pantai di Gresik, dengan bentuk morfologi yang lebih kompleks, mengakibatkan aliran-aliran sedimen saling bertemu. Hasil citra menunjukkan bahwa Pantai di Gresik, terlihat sangat keruh. Ini bisa jadi dikarenakan aliran sedimen yang saling bertemu dan bentuk morfologi pantai yang terlindung, sehingga sedimen tidak tertranspor ke laut lepas (Gambar 19 dan Gambar 20).

DAFTAR PUSTAKA

- Abidin, H. Z., Andreas, H., Gumilar, I., Sidiq, T. P., Gamal, M., Murdohardono, D., Supriyadi, Fukuda, Y. (2010). Studying Land Subsidence in Semarang (Indonesia) using Geodetic Methods. *FIG Congress*, (April 2010).
- Bird, E., & Lewis, N. (2015). Beach Renourishment. Journal of Coastal Research, 32(4), 998–998. https://doi.org/10.2112/jcoastres-d-16a-00004.1
- Coastal Engineering Research Center. (1984). Shore Protection Manual Volume I. Washington: U.S. Government Printing Office
- DHI. (2012). LITPACK An Integrated Modelling System for Littoral Processes and Coastline Kinetics. Hørsholm: DHI Water and Environment.
- Diposaptono, S., Budiman, & Agung, F. (2013). Menyiasati Perubahan Iklim di Wilayah Pesisir dan Pulau-pulau Kecil. Bogor: Sains Press.
- Hendriyono, W., Wibowo, M., Hakim, B. Al, & Istiyanto, D. C. (2015). Modeling of Sediment Transport Affecting the Coastline Changes due to Infrastructures in Batang Central Java. *Procedia Earth and Planetary Science*, *14*, 166–178.
 - https://doi.org/10.1016/j.proeps.2015.07.098
- López, M., Pagán, J. I., López, I., Aragonés, L., Tenza-Abril, A. J., & García-Barba, J. (2017). Factors influencing the retreat of the coastline. *International Journal of Computational Methods and Experimental Measurements*, *5*(5), 741–749. https://doi.org/10.2495/cmem-v5-n5-741-749
- Nicholls, R. J., Bradbury, A., Burningham, H., Dix, J., Ellis, M., French, J., Hall, J.W., Harshinie, U., Karunarathna, Lawn, J., Pan, S., Reeve, D.E., Rogers, B., Souza, A., Stansby, E.D., Sutherland, J., Tarrant, O., Walkden, M., Whitehouse, R. (2012). iCOASST Integrating Coastal Sediment Systems. *Proceedings of 33rd Conference on Coastal Engineering*, 1(1), 12–14. https://doi.org/10.1103/PhysRevA.65.054304

- Pethick, J. (1984). *An Introduction to Coastal Geomorphology*. London: Taylor & Francis Ltd.
- Rosati, J. D. (2005). Concepts in Sediment Budgets. Journal of Coastal Research, 212(1966), 307—322. https://doi.org/10.2112/02-475a.1
- Rosati, J. D., & Kraus, N. C. (1999). Advances in Coastal Sediment Budget Methodology- With Emphasis on Inlets. *Shore & Beach*, *67*(2), 56–65.
- Triatmodjo, B. (1999). *Teknik Pantai*. Yogyakarta: Beta Offset.
- Van Lancker, V., Lanckneus, J., Hearn, S., Hoekstra, P., Levoy, F., Miles, J., ... Whitehouse, R. (2004). Coastal and nearshore morphology, bedforms and sediment transport pathways at Teignmouth (UK). *Continental Shelf Research*, 24(11), 1171–1202. https://doi.org/10.1016/j.csr.2004.03.003
- Van Rijn, L. C. (2011). Coastal erosion and control. Ocean and Coastal Management, 54(12), 867–887. https://doi.org/10.1016/j.ocecoaman.2011.05. 004
- Van Rijn, L. C. (2013). Coastal Erosion based on the concept of sediment cells. *ConScience*, (March).
- Wicaksana, S., Sofian, I., & Pranowo, W. (2015).
 Karakteristik Gelombang Signifikan Di Selat
 Karimata Dan Laut Jawa Berdasarkan Rerata
 Angin 9 Tahunan (2005-2013). *Omni-Akuatika*,
 11(2), 33–40.
 https://doi.org/10.20884/1.oa.2015.11.2.37